This commit is contained in:
gulvarol
2019-05-22 18:03:53 +02:00
commit f14e9ef3a1
16 changed files with 1217 additions and 0 deletions

54
README.md Normal file
View File

@ -0,0 +1,54 @@
SMPL layer for PyTorch
=======
[SMPL](http://smpl.is.tue.mpg.de) human body [\[1\]](#references) layer for [PyTorch](https://pytorch.org/) (tested with v0.4 and v1.x)
is a differentiable PyTorch layer that deterministically maps from pose and shape parameters to human body joints and vertices.
It can be integrated into any architecture as a differentiable layer to predict body meshes.
The code is adapted from the [manopth](https://github.com/hassony2/manopth) repository by [Yana Hasson](https://github.com/hassony2).
<p align="center">
<img src="image.png" alt="smpl" width="300"/>
</p>
## Setting up
* Dependencies:
* Install the dependencies listed in [environment.yml](environment.yml)
* In an existing conda environment, `conda env update -f environment.yml`
* In a new environment, `conda env create -f environment.yml`, will create a conda environment named `smplpytorch`
* Download SMPL pickle files:
* Download the models from the [SMPL website](http://smpl.is.tue.mpg.de/) by choosing "SMPL for Python users". Note that you need to comply with the [SMPL model license](http://smpl.is.tue.mpg.de/license_model).
* Extract and copy the `models` folder into the `smpl/native/` folder.
## Demo
Forward pass the randomly created pose and shape parameters from the SMPL layer and display the human body mesh and joints:
`python demo.py`
## Acknowledgements
The code **largely** builds on the [manopth](https://github.com/hassony2/manopth) repository from [Yana Hasson](https://github.com/hassony2), which implements the [MANO](http://mano.is.tue.mpg.de) hand model [\[2\]](#references) layer.
The code is a PyTorch port of the original [SMPL](http://smpl.is.tue.mpg.de) model from [chumpy](https://github.com/mattloper/chumpy). It builds on the work of [Loper](https://github.com/mattloper) et al. [\[1\]](#references).
The code [reuses](https://github.com/gulvarol/smpl/pytorch/rodrigues_layer.py) [part of the code](https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py) by [Zhang Xiong](https://github.com/MandyMo) to compute the rotation utilities.
If you find this code useful for your research, please cite the original [SMPL](http://smpl.is.tue.mpg.de) publication:
```
@article{SMPL:2015,
author = {Loper, Matthew and Mahmood, Naureen and Romero, Javier and Pons-Moll, Gerard and Black, Michael J.},
title = {{SMPL}: A Skinned Multi-Person Linear Model},
journal = {ACM Trans. Graphics (Proc. SIGGRAPH Asia)},
number = {6},
pages = {248:1--248:16},
volume = {34},
year = {2015}
}
```
## References
\[1\] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black, "SMPL: A Skinned Multi-Person Linear Model," SIGGRAPH Asia, 2015.
\[2\] Javier Romero, Dimitrios Tzionas, and Michael J. Black, "Embodied Hands: Modeling and Capturing Hands and Bodies Together," SIGGRAPH Asia, 2017.