Init.
This commit is contained in:
54
README.md
Normal file
54
README.md
Normal file
@ -0,0 +1,54 @@
|
||||
SMPL layer for PyTorch
|
||||
=======
|
||||
|
||||
[SMPL](http://smpl.is.tue.mpg.de) human body [\[1\]](#references) layer for [PyTorch](https://pytorch.org/) (tested with v0.4 and v1.x)
|
||||
is a differentiable PyTorch layer that deterministically maps from pose and shape parameters to human body joints and vertices.
|
||||
It can be integrated into any architecture as a differentiable layer to predict body meshes.
|
||||
The code is adapted from the [manopth](https://github.com/hassony2/manopth) repository by [Yana Hasson](https://github.com/hassony2).
|
||||
|
||||
<p align="center">
|
||||
<img src="image.png" alt="smpl" width="300"/>
|
||||
</p>
|
||||
|
||||
## Setting up
|
||||
|
||||
* Dependencies:
|
||||
* Install the dependencies listed in [environment.yml](environment.yml)
|
||||
* In an existing conda environment, `conda env update -f environment.yml`
|
||||
* In a new environment, `conda env create -f environment.yml`, will create a conda environment named `smplpytorch`
|
||||
* Download SMPL pickle files:
|
||||
* Download the models from the [SMPL website](http://smpl.is.tue.mpg.de/) by choosing "SMPL for Python users". Note that you need to comply with the [SMPL model license](http://smpl.is.tue.mpg.de/license_model).
|
||||
* Extract and copy the `models` folder into the `smpl/native/` folder.
|
||||
|
||||
## Demo
|
||||
|
||||
Forward pass the randomly created pose and shape parameters from the SMPL layer and display the human body mesh and joints:
|
||||
|
||||
`python demo.py`
|
||||
|
||||
## Acknowledgements
|
||||
The code **largely** builds on the [manopth](https://github.com/hassony2/manopth) repository from [Yana Hasson](https://github.com/hassony2), which implements the [MANO](http://mano.is.tue.mpg.de) hand model [\[2\]](#references) layer.
|
||||
|
||||
The code is a PyTorch port of the original [SMPL](http://smpl.is.tue.mpg.de) model from [chumpy](https://github.com/mattloper/chumpy). It builds on the work of [Loper](https://github.com/mattloper) et al. [\[1\]](#references).
|
||||
|
||||
The code [reuses](https://github.com/gulvarol/smpl/pytorch/rodrigues_layer.py) [part of the code](https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py) by [Zhang Xiong](https://github.com/MandyMo) to compute the rotation utilities.
|
||||
|
||||
If you find this code useful for your research, please cite the original [SMPL](http://smpl.is.tue.mpg.de) publication:
|
||||
|
||||
```
|
||||
@article{SMPL:2015,
|
||||
author = {Loper, Matthew and Mahmood, Naureen and Romero, Javier and Pons-Moll, Gerard and Black, Michael J.},
|
||||
title = {{SMPL}: A Skinned Multi-Person Linear Model},
|
||||
journal = {ACM Trans. Graphics (Proc. SIGGRAPH Asia)},
|
||||
number = {6},
|
||||
pages = {248:1--248:16},
|
||||
volume = {34},
|
||||
year = {2015}
|
||||
}
|
||||
```
|
||||
|
||||
## References
|
||||
|
||||
\[1\] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black, "SMPL: A Skinned Multi-Person Linear Model," SIGGRAPH Asia, 2015.
|
||||
|
||||
\[2\] Javier Romero, Dimitrios Tzionas, and Michael J. Black, "Embodied Hands: Modeling and Capturing Hands and Bodies Together," SIGGRAPH Asia, 2017.
|
||||
Reference in New Issue
Block a user