import torch import torch.nn.functional as F import torch.optim as optim import sys import os from tqdm import tqdm sys.path.append(os.getcwd()) def init(smpl_layer, target, device, cfg): params = {} params["pose_params"] = torch.zeros(target.shape[0], 72) params["shape_params"] = torch.zeros(target.shape[0], 10) params["scale"] = torch.ones([1]) smpl_layer = smpl_layer.to(device) params["pose_params"] = params["pose_params"].to(device) params["shape_params"] = params["shape_params"].to(device) target = target.to(device) params["scale"] = params["scale"].to(device) params["pose_params"].requires_grad = True params["shape_params"].requires_grad = bool(cfg.TRAIN.OPTIMIZE_SHAPE) params["scale"].requires_grad = bool(cfg.TRAIN.OPTIMIZE_SCALE) optimizer = optim.Adam([params["pose_params"], params["shape_params"], params["scale"]], lr=cfg.TRAIN.LEARNING_RATE) index = {} smpl_index = [] dataset_index = [] for tp in cfg.DATASET.DATA_MAP: smpl_index.append(tp[0]) dataset_index.append(tp[1]) index["smpl_index"] = torch.tensor(smpl_index).to(device) index["dataset_index"] = torch.tensor(dataset_index).to(device) return smpl_layer, params, target, optimizer, index def train(smpl_layer, target, logger, writer, device, args, cfg, meters): res = [] smpl_layer, params, target, optimizer, index = \ init(smpl_layer, target, device, cfg) pose_params = params["pose_params"] shape_params = params["shape_params"] scale = params["scale"] for epoch in tqdm(range(cfg.TRAIN.MAX_EPOCH)): # for epoch in range(cfg.TRAIN.MAX_EPOCH): verts, Jtr = smpl_layer(pose_params, th_betas=shape_params) loss = F.smooth_l1_loss(Jtr.index_select(1, index["smpl_index"]) * 100, target.index_select(1, index["dataset_index"]) * 100 * scale) optimizer.zero_grad() loss.backward() optimizer.step() meters.update_early_stop(float(loss)) if meters.update_res: res = [pose_params, shape_params, verts, Jtr] if meters.early_stop: logger.info("Early stop at epoch {} !".format(epoch)) break if epoch % cfg.TRAIN.WRITE == 0: # logger.info("Epoch {}, lossPerBatch={:.6f}, scale={:.4f}".format( # epoch, float(loss),float(scale))) writer.add_scalar('loss', float(loss), epoch) writer.add_scalar('learning_rate', float( optimizer.state_dict()['param_groups'][0]['lr']), epoch) logger.info('Train ended, min_loss = {:.4f}'.format( float(meters.min_loss))) return res