Files
Pose_to_SMPL_an_230402/smpl/native/webuser/serialization.py
gulvarol f14e9ef3a1 Init.
2019-05-22 18:03:53 +02:00

40 lines
1.5 KiB
Python

def ready_arguments(fname_or_dict):
import numpy as np
import pickle
import chumpy as ch
from chumpy.ch import MatVecMult
from smpl.native.webuser.posemapper import posemap
if not isinstance(fname_or_dict, dict):
dd = pickle.load(open(fname_or_dict, 'rb'), encoding='latin1')
# dd = pickle.load(open(fname_or_dict, 'rb'))
else:
dd = fname_or_dict
want_shapemodel = 'shapedirs' in dd
nposeparms = dd['kintree_table'].shape[1] * 3
if 'trans' not in dd:
dd['trans'] = np.zeros(3)
if 'pose' not in dd:
dd['pose'] = np.zeros(nposeparms)
if 'shapedirs' in dd and 'betas' not in dd:
dd['betas'] = np.zeros(dd['shapedirs'].shape[-1])
for s in ['v_template', 'weights', 'posedirs', 'pose', 'trans', 'shapedirs', 'betas', 'J']:
if (s in dd) and not hasattr(dd[s], 'dterms'):
dd[s] = ch.array(dd[s])
if want_shapemodel:
dd['v_shaped'] = dd['shapedirs'].dot(dd['betas']) + dd['v_template']
v_shaped = dd['v_shaped']
J_tmpx = MatVecMult(dd['J_regressor'], v_shaped[:, 0])
J_tmpy = MatVecMult(dd['J_regressor'], v_shaped[:, 1])
J_tmpz = MatVecMult(dd['J_regressor'], v_shaped[:, 2])
dd['J'] = ch.vstack((J_tmpx, J_tmpy, J_tmpz)).T
dd['v_posed'] = v_shaped + dd['posedirs'].dot(posemap(dd['bs_type'])(dd['pose']))
else:
dd['v_posed'] = dd['v_template'] + dd['posedirs'].dot(posemap(dd['bs_type'])(dd['pose']))
return dd