feat: Enhance playground.py with new 3D tracking and affinity calculations
- Added functions for calculating perpendicular distances between predicted 3D tracking points and camera rays, improving 3D tracking accuracy. - Introduced a new function for calculating 3D affinity scores based on distances and time differences, enhancing the integration of 3D tracking with existing systems. - Updated existing functions to support new data types and improved documentation for clarity on parameters and return values. - Refactored affinity calculation logic to utilize JAX for performance optimization in distance computations.
This commit is contained in:
156
playground.py
156
playground.py
@ -568,7 +568,7 @@ def calculate_distance_2d(
|
||||
left: Num[Array, "J 2"],
|
||||
right: Num[Array, "J 2"],
|
||||
image_size: tuple[int, int] = (1, 1),
|
||||
):
|
||||
) -> Float[Array, "J"]:
|
||||
"""
|
||||
Calculate the *normalized* distance between two sets of keypoints.
|
||||
|
||||
@ -576,6 +576,9 @@ def calculate_distance_2d(
|
||||
left: The left keypoints
|
||||
right: The right keypoints
|
||||
image_size: The size of the image
|
||||
|
||||
Returns:
|
||||
Array of normalized Euclidean distances between corresponding keypoints
|
||||
"""
|
||||
w, h = image_size
|
||||
if w == 1 and h == 1:
|
||||
@ -590,25 +593,41 @@ def calculate_distance_2d(
|
||||
|
||||
@jaxtyped(typechecker=beartype)
|
||||
def calculate_affinity_2d(
|
||||
distance_2d: float, w_2d: float, alpha_2d: float, lambda_a: float, delta_t: float
|
||||
distance_2d: Float[Array, "J"],
|
||||
delta_t: timedelta,
|
||||
w_2d: float,
|
||||
alpha_2d: float,
|
||||
lambda_a: float,
|
||||
) -> float:
|
||||
"""
|
||||
Calculate the affinity between two detections based on the distance between their keypoints.
|
||||
Calculate the affinity between two detections based on the distances between their keypoints.
|
||||
|
||||
The affinity score is calculated by summing individual keypoint affinities:
|
||||
A_2D = sum(w_2D * (1 - distance_2D / (alpha_2D*delta_t)) * np.exp(-lambda_a * delta_t)) for each keypoint
|
||||
|
||||
Args:
|
||||
distance_2d: The normalized distance between the two keypoints (see `calculate_distance_2d`)
|
||||
w_2d: The weight of the distance (parameter)
|
||||
alpha_2d: The alpha value for the distance calculation (parameter)
|
||||
lambda_a: The lambda value for the distance calculation (parameter)
|
||||
distance_2d: The normalized distances between keypoints (array with one value per keypoint)
|
||||
w_2d: The weight for 2D affinity
|
||||
alpha_2d: The normalization factor for distance
|
||||
lambda_a: The decay rate for time difference
|
||||
delta_t: The time delta between the two detections, in seconds
|
||||
|
||||
Returns:
|
||||
Sum of affinity scores across all keypoints
|
||||
"""
|
||||
return w_2d * (1 - distance_2d / (alpha_2d * delta_t)) * np.exp(-lambda_a * delta_t)
|
||||
delta_t_s = delta_t.total_seconds()
|
||||
affinity_per_keypoint = (
|
||||
w_2d
|
||||
* (1 - distance_2d / (alpha_2d * delta_t_s))
|
||||
* jnp.exp(-lambda_a * delta_t_s)
|
||||
)
|
||||
return jnp.sum(affinity_per_keypoint).item()
|
||||
|
||||
|
||||
@jaxtyped(typechecker=beartype)
|
||||
def perpendicular_distance_point_to_line_two_points(
|
||||
point: Num[Array, "2"], line: tuple[Num[Array, "2"], Num[Array, "2"]]
|
||||
):
|
||||
point: Num[Array, "3"], line: tuple[Num[Array, "3"], Num[Array, "3"]]
|
||||
) -> Float[Array, ""]:
|
||||
"""
|
||||
Calculate the perpendicular distance between a point and a line.
|
||||
|
||||
@ -621,20 +640,106 @@ def perpendicular_distance_point_to_line_two_points(
|
||||
return distance
|
||||
|
||||
|
||||
@jaxtyped(typechecker=beartype)
|
||||
def perpendicular_distance_camera_2d_points_to_tracking_raycasting(
|
||||
detection: Detection,
|
||||
tracking: Tracking,
|
||||
delta_t: timedelta,
|
||||
) -> Float[Array, "J"]:
|
||||
"""
|
||||
Calculate the perpendicular distances between predicted 3D tracking points
|
||||
and the rays cast from camera center through the 2D image points.
|
||||
|
||||
Args:
|
||||
detection: The detection object containing 2D keypoints and camera parameters
|
||||
tracking: The tracking object containing 3D keypoints
|
||||
delta_t: Time delta between the tracking's last update and current observation
|
||||
|
||||
Returns:
|
||||
Array of perpendicular distances for each keypoint
|
||||
"""
|
||||
camera = detection.camera
|
||||
# Convert timedelta to seconds for prediction
|
||||
delta_t_s = delta_t.total_seconds()
|
||||
|
||||
# Predict the 3D pose based on tracking and delta_t
|
||||
predicted_pose = predict_pose_3d(tracking, delta_t_s)
|
||||
|
||||
# Back-project the 2D points to 3D space (assuming z=0 plane)
|
||||
back_projected_points = detection.camera.unproject_points_to_z_plane(
|
||||
detection.keypoints, z=0.0
|
||||
)
|
||||
|
||||
# Get camera center from the camera parameters
|
||||
camera_center = camera.params.location
|
||||
|
||||
# Define function to calculate distance between a predicted point and its corresponding ray
|
||||
def calc_distance(predicted_point, back_projected_point):
|
||||
return perpendicular_distance_point_to_line_two_points(
|
||||
predicted_point, (camera_center, back_projected_point)
|
||||
)
|
||||
|
||||
# Vectorize over all keypoints
|
||||
vmap_calc_distance = jax.vmap(calc_distance)
|
||||
|
||||
# Calculate and return distances for all keypoints
|
||||
return vmap_calc_distance(predicted_pose, back_projected_points)
|
||||
|
||||
|
||||
@jaxtyped(typechecker=beartype)
|
||||
def calculate_affinity_3d(
|
||||
distances: Float[Array, "J"],
|
||||
delta_t: timedelta,
|
||||
w_3d: float,
|
||||
alpha_3d: float,
|
||||
lambda_a: float,
|
||||
) -> float:
|
||||
"""
|
||||
Calculate 3D affinity score between a tracking and detection.
|
||||
|
||||
The affinity score is calculated by summing individual keypoint affinities:
|
||||
A_3D = sum(w_3D * (1 - dl / alpha_3D) * np.exp(-lambda_a * delta_t)) for each keypoint
|
||||
|
||||
Args:
|
||||
distances: Array of perpendicular distances for each keypoint
|
||||
delta_t: Time difference between tracking and detection
|
||||
w_3d: Weight for 3D affinity
|
||||
alpha_3d: Normalization factor for distance
|
||||
lambda_a: Decay rate for time difference
|
||||
|
||||
Returns:
|
||||
Sum of affinity scores across all keypoints
|
||||
"""
|
||||
delta_t_s = delta_t.total_seconds()
|
||||
affinity_per_keypoint = (
|
||||
w_3d * (1 - distances / alpha_3d) * jnp.exp(-lambda_a * delta_t_s)
|
||||
)
|
||||
|
||||
# Sum affinities across all keypoints
|
||||
return jnp.sum(affinity_per_keypoint).item()
|
||||
|
||||
|
||||
def predict_pose_3d(
|
||||
tracking: Tracking,
|
||||
delta_t: float,
|
||||
delta_t_s: float,
|
||||
) -> Float[Array, "J 3"]:
|
||||
"""
|
||||
Predict the 3D pose of a tracking based on its velocity.
|
||||
"""
|
||||
if tracking.velocity is None:
|
||||
return tracking.keypoints
|
||||
return tracking.keypoints + tracking.velocity * delta_t
|
||||
return tracking.keypoints + tracking.velocity * delta_t_s
|
||||
|
||||
|
||||
# %%
|
||||
# let's do cross-view association
|
||||
W_2D = 1.0
|
||||
ALPHA_2D = 1.0
|
||||
LAMBDA_A = 0.1
|
||||
W_3D = 1.0
|
||||
ALPHA_3D = 1.0
|
||||
LAMBDA_A = 0.1
|
||||
|
||||
trackings = sorted(global_tracking_state.trackings.values(), key=lambda x: x.id)
|
||||
unmatched_detections = shallow_copy(next_group)
|
||||
# cross-view association matrix with shape (T, D), where T is the number of
|
||||
@ -647,12 +752,35 @@ unmatched_detections = shallow_copy(next_group)
|
||||
#
|
||||
# where T <- [t1..tt]; D <- join(c1..cc), where `cn` is a collection of
|
||||
# detections from camera `n`
|
||||
affinity = np.zeros((len(trackings), len(unmatched_detections)))
|
||||
affinity = jnp.zeros((len(trackings), len(unmatched_detections)))
|
||||
detection_by_camera = classify_by_camera(unmatched_detections)
|
||||
for i, tracking in enumerate(trackings):
|
||||
j = 0
|
||||
for c, detections in detection_by_camera.items():
|
||||
camera = next(iter(detections)).camera
|
||||
# pixel space, unnormalized
|
||||
tracking_2d_projection = camera.project(tracking.keypoints)
|
||||
for det in detections:
|
||||
...
|
||||
delta_t = det.timestamp - tracking.last_active_timestamp
|
||||
distance_2d = calculate_distance_2d(tracking_2d_projection, det.keypoints)
|
||||
affinity_2d = calculate_affinity_2d(
|
||||
distance_2d,
|
||||
delta_t,
|
||||
w_2d=W_2D,
|
||||
alpha_2d=ALPHA_2D,
|
||||
lambda_a=LAMBDA_A,
|
||||
)
|
||||
distances = perpendicular_distance_camera_2d_points_to_tracking_raycasting(
|
||||
det, tracking, delta_t
|
||||
)
|
||||
affinity_3d = calculate_affinity_3d(
|
||||
distances,
|
||||
delta_t,
|
||||
w_3d=W_3D,
|
||||
alpha_3d=ALPHA_3D,
|
||||
lambda_a=LAMBDA_A,
|
||||
)
|
||||
affinity_sum = affinity_2d + affinity_3d
|
||||
affinity = affinity.at[i, j].set(affinity_sum)
|
||||
j += 1
|
||||
display(affinity)
|
||||
|
||||
Reference in New Issue
Block a user