- Removed unused `reset` methods from `GenericVelocityFilter` and `LastDifferenceVelocityFilter` classes to streamline the code. - Added a static method `from_tracking` to `LeastMeanSquareVelocityFilter` for creating instances from a `Tracking` object. - Implemented robust error handling in the `predict` and `get` methods to ensure proper functioning with historical detections. - Enhanced the `update` method to utilize least squares for velocity estimation, improving accuracy in tracking predictions. - Updated class documentation to reflect changes and clarify method purposes.
377 lines
12 KiB
Python
377 lines
12 KiB
Python
from dataclasses import dataclass
|
|
from datetime import datetime
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Generator,
|
|
Optional,
|
|
Sequence,
|
|
TypeAlias,
|
|
TypedDict,
|
|
TypeVar,
|
|
cast,
|
|
overload,
|
|
Protocol,
|
|
)
|
|
from datetime import timedelta
|
|
import jax.numpy as jnp
|
|
from beartype import beartype
|
|
from beartype.typing import Mapping, Sequence
|
|
from jax import Array
|
|
from jaxtyping import Array, Float, Int, jaxtyped
|
|
from pyrsistent import PVector, v
|
|
from itertools import chain
|
|
from app.camera import Detection
|
|
|
|
|
|
class TrackingPrediction(TypedDict):
|
|
velocity: Float[Array, "J 3"]
|
|
keypoints: Float[Array, "J 3"]
|
|
|
|
|
|
class GenericVelocityFilter(Protocol):
|
|
"""
|
|
a filter interface for tracking velocity estimation
|
|
"""
|
|
|
|
def predict(self, timestamp: datetime) -> TrackingPrediction:
|
|
"""
|
|
predict the velocity and the keypoints location
|
|
|
|
Args:
|
|
timestamp: timestamp of the prediction
|
|
|
|
Returns:
|
|
velocity: velocity of the tracking
|
|
keypoints: keypoints of the tracking
|
|
"""
|
|
... # pylint: disable=unnecessary-ellipsis
|
|
|
|
def update(self, keypoints: Float[Array, "J 3"], timestamp: datetime) -> None:
|
|
"""
|
|
update the filter state with new measurements
|
|
|
|
Args:
|
|
keypoints: new measurements
|
|
timestamp: timestamp of the update
|
|
"""
|
|
... # pylint: disable=unnecessary-ellipsis
|
|
|
|
def get(self) -> TrackingPrediction:
|
|
"""
|
|
get the current state of the filter state
|
|
|
|
Returns:
|
|
velocity: velocity of the tracking
|
|
keypoints: keypoints of the tracking
|
|
"""
|
|
... # pylint: disable=unnecessary-ellipsis
|
|
|
|
|
|
class LastDifferenceVelocityFilter(GenericVelocityFilter):
|
|
"""
|
|
a naive velocity filter that uses the last difference of keypoints
|
|
"""
|
|
|
|
_last_timestamp: datetime
|
|
_last_keypoints: Float[Array, "J 3"]
|
|
_last_velocity: Optional[Float[Array, "J 3"]] = None
|
|
|
|
def __init__(self, keypoints: Float[Array, "J 3"], timestamp: datetime):
|
|
self._last_keypoints = keypoints
|
|
self._last_timestamp = timestamp
|
|
|
|
def predict(self, timestamp: datetime) -> TrackingPrediction:
|
|
delta_t_s = (timestamp - self._last_timestamp).total_seconds()
|
|
if self._last_velocity is None:
|
|
return TrackingPrediction(
|
|
velocity=jnp.zeros_like(self._last_keypoints),
|
|
keypoints=self._last_keypoints,
|
|
)
|
|
else:
|
|
return TrackingPrediction(
|
|
velocity=self._last_velocity,
|
|
keypoints=self._last_keypoints + self._last_velocity * delta_t_s,
|
|
)
|
|
|
|
def update(self, keypoints: Float[Array, "J 3"], timestamp: datetime) -> None:
|
|
delta_t_s = (timestamp - self._last_timestamp).total_seconds()
|
|
self._last_velocity = (keypoints - self._last_keypoints) / delta_t_s
|
|
self._last_keypoints = keypoints
|
|
self._last_timestamp = timestamp
|
|
|
|
def get(self) -> TrackingPrediction:
|
|
if self._last_velocity is None:
|
|
return TrackingPrediction(
|
|
velocity=jnp.zeros_like(self._last_keypoints),
|
|
keypoints=self._last_keypoints,
|
|
)
|
|
else:
|
|
return TrackingPrediction(
|
|
velocity=self._last_velocity,
|
|
keypoints=self._last_keypoints,
|
|
)
|
|
|
|
|
|
class LeastMeanSquareVelocityFilter(GenericVelocityFilter):
|
|
"""
|
|
a velocity filter that uses the least mean square method to estimate the velocity
|
|
"""
|
|
|
|
_get_historical_detections: Callable[[], Sequence[Detection]]
|
|
"""
|
|
get the current historical detections, assuming the detections are sorted by
|
|
timestamp incrementally (i.e. index 0 is the oldest detection, index -1 is
|
|
the newest detection)
|
|
"""
|
|
_velocity: Optional[Float[Array, "J 3"]] = None
|
|
|
|
@staticmethod
|
|
def from_tracking(tracking: "Tracking") -> "LeastMeanSquareVelocityFilter":
|
|
"""
|
|
create a LeastMeanSquareVelocityFilter from a Tracking object
|
|
"""
|
|
velocity = tracking.velocity_filter.get()["velocity"]
|
|
if jnp.all(velocity == jnp.zeros_like(velocity)):
|
|
return LeastMeanSquareVelocityFilter(
|
|
get_historical_detections=lambda: tracking.historical_detections
|
|
)
|
|
else:
|
|
f = LeastMeanSquareVelocityFilter(
|
|
get_historical_detections=lambda: tracking.historical_detections
|
|
)
|
|
# pylint: disable-next=protected-access
|
|
f._velocity = velocity
|
|
return f
|
|
|
|
def __init__(self, get_historical_detections: Callable[[], Sequence[Detection]]):
|
|
self._get_historical_detections = get_historical_detections
|
|
self._velocity = None
|
|
|
|
@property
|
|
def velocity(self) -> Float[Array, "J 3"]:
|
|
if self._velocity is None:
|
|
raise ValueError("Velocity not initialized")
|
|
return self._velocity
|
|
|
|
def predict(self, timestamp: datetime) -> TrackingPrediction:
|
|
historical_detections = self._get_historical_detections()
|
|
if not historical_detections:
|
|
raise ValueError("No historical detections available for prediction")
|
|
|
|
# Use the latest historical detection
|
|
latest_detection = historical_detections[-1]
|
|
latest_keypoints = latest_detection.keypoints
|
|
latest_timestamp = latest_detection.timestamp
|
|
|
|
delta_t_s = (timestamp - latest_timestamp).total_seconds()
|
|
|
|
if self._velocity is None:
|
|
return TrackingPrediction(
|
|
velocity=jnp.zeros_like(latest_keypoints), keypoints=latest_keypoints
|
|
)
|
|
else:
|
|
# Linear motion model: ẋt = xt' + Vt' · (t - t')
|
|
predicted_keypoints = latest_keypoints + self._velocity * delta_t_s
|
|
return TrackingPrediction(
|
|
velocity=self._velocity, keypoints=predicted_keypoints
|
|
)
|
|
|
|
@jaxtyped(typechecker=beartype)
|
|
def _update(
|
|
self,
|
|
keypoints: Float[Array, "N J 3"],
|
|
timestamps: Float[Array, "N"],
|
|
) -> None:
|
|
"""
|
|
update measurements with least mean square method
|
|
"""
|
|
if keypoints.shape[0] < 2:
|
|
raise ValueError("Not enough measurements to estimate velocity")
|
|
|
|
# Using least squares to fit a linear model for each joint and dimension
|
|
# X = timestamps, y = keypoints
|
|
# For each joint and each dimension, we solve for velocity
|
|
|
|
n_samples = timestamps.shape[0]
|
|
n_joints = keypoints.shape[1]
|
|
|
|
# Create design matrix for linear regression
|
|
# [t, 1] for each timestamp
|
|
X = jnp.column_stack([timestamps, jnp.ones(n_samples)])
|
|
|
|
# Reshape keypoints to solve for all joints and dimensions at once
|
|
# From [N, J, 3] to [N, J*3]
|
|
keypoints_reshaped = keypoints.reshape(n_samples, -1)
|
|
|
|
# Use JAX's lstsq to solve the least squares problem
|
|
# This is more numerically stable than manually computing pseudoinverse
|
|
coefficients, _, _, _ = jnp.linalg.lstsq(X, keypoints_reshaped, rcond=None)
|
|
|
|
# Coefficients shape is [2, J*3]
|
|
# First row: velocities, Second row: intercepts
|
|
velocities = coefficients[0].reshape(n_joints, 3)
|
|
|
|
# Update velocity
|
|
self._velocity = velocities
|
|
|
|
def update(self, keypoints: Float[Array, "J 3"], timestamp: datetime) -> None:
|
|
historical_detections = self._get_historical_detections()
|
|
|
|
if not historical_detections:
|
|
self._velocity = jnp.zeros_like(keypoints)
|
|
return
|
|
|
|
t_0 = min(d.timestamp for d in historical_detections)
|
|
|
|
all_keypoints = jnp.array(
|
|
list(chain((d.keypoints for d in historical_detections), (keypoints,)))
|
|
)
|
|
|
|
# Timestamps relative to t_0 (the oldest detection timestamp)
|
|
all_timestamps = jnp.array(
|
|
list(
|
|
chain(
|
|
(
|
|
(d.timestamp - t_0).total_seconds()
|
|
for d in historical_detections
|
|
),
|
|
((timestamp - t_0).total_seconds(),),
|
|
)
|
|
)
|
|
)
|
|
|
|
self._update(all_keypoints, all_timestamps)
|
|
|
|
def get(self) -> TrackingPrediction:
|
|
historical_detections = self._get_historical_detections()
|
|
if not historical_detections:
|
|
raise ValueError("No historical detections available")
|
|
|
|
latest_detection = historical_detections[-1]
|
|
latest_keypoints = latest_detection.keypoints
|
|
|
|
if self._velocity is None:
|
|
return TrackingPrediction(
|
|
velocity=jnp.zeros_like(latest_keypoints), keypoints=latest_keypoints
|
|
)
|
|
else:
|
|
return TrackingPrediction(
|
|
velocity=self._velocity, keypoints=latest_keypoints
|
|
)
|
|
|
|
|
|
@jaxtyped(typechecker=beartype)
|
|
@dataclass(frozen=True)
|
|
class Tracking:
|
|
id: int
|
|
"""
|
|
The tracking id
|
|
"""
|
|
keypoints: Float[Array, "J 3"]
|
|
"""
|
|
The 3D keypoints of the tracking
|
|
|
|
Used for calculate affinity 3D
|
|
"""
|
|
last_active_timestamp: datetime
|
|
"""
|
|
The last active timestamp of the tracking
|
|
"""
|
|
|
|
historical_detections: PVector[Detection]
|
|
"""
|
|
Historical detections of the tracking.
|
|
|
|
Used for 3D re-triangulation
|
|
"""
|
|
|
|
velocity_filter: GenericVelocityFilter
|
|
"""
|
|
The velocity filter of the tracking
|
|
"""
|
|
|
|
def __repr__(self) -> str:
|
|
return f"Tracking({self.id}, {self.last_active_timestamp})"
|
|
|
|
@overload
|
|
def predict(self, time: float) -> Float[Array, "J 3"]:
|
|
"""
|
|
predict the keypoints at a given time
|
|
|
|
Args:
|
|
time: the time in seconds to predict the keypoints
|
|
|
|
Returns:
|
|
the predicted keypoints
|
|
"""
|
|
... # pylint: disable=unnecessary-ellipsis
|
|
|
|
@overload
|
|
def predict(self, time: timedelta) -> Float[Array, "J 3"]:
|
|
"""
|
|
predict the keypoints at a given time
|
|
|
|
Args:
|
|
time: the time delta to predict the keypoints
|
|
"""
|
|
... # pylint: disable=unnecessary-ellipsis
|
|
|
|
@overload
|
|
def predict(self, time: datetime) -> Float[Array, "J 3"]:
|
|
"""
|
|
predict the keypoints at a given time
|
|
|
|
Args:
|
|
time: the timestamp to predict the keypoints
|
|
"""
|
|
... # pylint: disable=unnecessary-ellipsis
|
|
|
|
def predict(
|
|
self,
|
|
time: float | timedelta | datetime,
|
|
) -> Float[Array, "J 3"]:
|
|
if isinstance(time, timedelta):
|
|
timestamp = self.last_active_timestamp + time
|
|
elif isinstance(time, datetime):
|
|
timestamp = time
|
|
else:
|
|
timestamp = self.last_active_timestamp + timedelta(seconds=time)
|
|
# pylint: disable-next=unsubscriptable-object
|
|
return self.velocity_filter.predict(timestamp)["keypoints"]
|
|
|
|
@property
|
|
def velocity(self) -> Float[Array, "J 3"]:
|
|
"""
|
|
The velocity of the tracking for each keypoint
|
|
"""
|
|
# pylint: disable-next=unsubscriptable-object
|
|
return self.velocity_filter.get()["velocity"]
|
|
|
|
|
|
@jaxtyped(typechecker=beartype)
|
|
@dataclass
|
|
class AffinityResult:
|
|
"""
|
|
Result of affinity computation between trackings and detections.
|
|
"""
|
|
|
|
matrix: Float[Array, "T D"]
|
|
trackings: Sequence[Tracking]
|
|
detections: Sequence[Detection]
|
|
indices_T: Int[Array, "T"] # pylint: disable=invalid-name
|
|
indices_D: Int[Array, "D"] # pylint: disable=invalid-name
|
|
|
|
def tracking_detections(
|
|
self,
|
|
) -> Generator[tuple[float, Tracking, Detection], None, None]:
|
|
"""
|
|
iterate over the best matching trackings and detections
|
|
"""
|
|
for t, d in zip(self.indices_T, self.indices_D):
|
|
yield (
|
|
self.matrix[t, d].item(),
|
|
self.trackings[t],
|
|
self.detections[d],
|
|
)
|