152 lines
5.8 KiB
Python
152 lines
5.8 KiB
Python
import cv2
|
|
import numpy as np
|
|
from cv2 import aruco
|
|
from cv2.typing import MatLike
|
|
from enum import Enum
|
|
from pathlib import Path
|
|
from loguru import logger
|
|
from itertools import chain
|
|
from typing import Optional, Sequence, TypedDict, cast
|
|
import awkward as ak
|
|
|
|
from matplotlib.pyplot import stem
|
|
from numpy import ndarray
|
|
|
|
|
|
class ArucoDictionary(Enum):
|
|
Dict_4X4_50 = aruco.DICT_4X4_50
|
|
Dict_4X4_100 = aruco.DICT_4X4_100
|
|
Dict_4X4_250 = aruco.DICT_4X4_250
|
|
Dict_4X4_1000 = aruco.DICT_4X4_1000
|
|
Dict_5X5_50 = aruco.DICT_5X5_50
|
|
Dict_5X5_100 = aruco.DICT_5X5_100
|
|
Dict_5X5_250 = aruco.DICT_5X5_250
|
|
Dict_5X5_1000 = aruco.DICT_5X5_1000
|
|
Dict_6X6_50 = aruco.DICT_6X6_50
|
|
Dict_6X6_100 = aruco.DICT_6X6_100
|
|
Dict_6X6_250 = aruco.DICT_6X6_250
|
|
Dict_6X6_1000 = aruco.DICT_6X6_1000
|
|
Dict_7X7_50 = aruco.DICT_7X7_50
|
|
Dict_7X7_100 = aruco.DICT_7X7_100
|
|
Dict_7X7_250 = aruco.DICT_7X7_250
|
|
Dict_7X7_1000 = aruco.DICT_7X7_1000
|
|
Dict_APRILTAG_16h5 = aruco.DICT_APRILTAG_16h5
|
|
Dict_APRILTAG_25h9 = aruco.DICT_APRILTAG_25h9
|
|
Dict_APRILTAG_36h10 = aruco.DICT_APRILTAG_36h10
|
|
Dict_APRILTAG_36h11 = aruco.DICT_APRILTAG_36h11
|
|
Dict_ArUco_ORIGINAL = aruco.DICT_ARUCO_ORIGINAL
|
|
|
|
|
|
IMAGE_FOLDER = Path("dumped/usbcam")
|
|
OUTPUT_FOLDER = Path("output")
|
|
DICTIONARY = ArucoDictionary.Dict_4X4_50
|
|
CALIBRATION_PARQUET: Optional[Path] = OUTPUT_FOLDER / "usbcam_cal.parquet"
|
|
|
|
|
|
class CameraParams(TypedDict):
|
|
camera_matrix: MatLike
|
|
distortion_coefficients: MatLike
|
|
rotation_vectors: MatLike
|
|
translation_vectors: MatLike
|
|
|
|
|
|
def main():
|
|
OUTPUT_FOLDER.mkdir(exist_ok=True)
|
|
images = chain(
|
|
IMAGE_FOLDER.glob("*.jpeg"),
|
|
IMAGE_FOLDER.glob("*.png"),
|
|
IMAGE_FOLDER.glob("*.jpg"),
|
|
)
|
|
border_num_x = 10
|
|
border_num_y = 7
|
|
dictionary = aruco.getPredefinedDictionary(DICTIONARY.value)
|
|
board = aruco.CharucoBoard((border_num_x, border_num_y), 0.115, 0.09, dictionary)
|
|
detector = aruco.CharucoDetector(board)
|
|
all_ch_corners: list[MatLike] = []
|
|
all_ch_ids: list[MatLike] = []
|
|
all_image_points: list[MatLike] = []
|
|
all_object_points: list[MatLike] = []
|
|
last_shape = np.array((0, 0))
|
|
calibration: Optional[ak.Record] = None
|
|
|
|
def has_cal():
|
|
return CALIBRATION_PARQUET is not None and CALIBRATION_PARQUET.exists()
|
|
|
|
try:
|
|
if has_cal():
|
|
calibration_arr = ak.from_parquet(CALIBRATION_PARQUET)
|
|
calibration = calibration_arr[0]
|
|
logger.info(f"Loaded calibration parameters: {calibration}")
|
|
except Exception as e:
|
|
logger.error(f"Failed to load calibration parameters: {e}")
|
|
for img_path in images:
|
|
img = cv2.imread(str(img_path))
|
|
last_shape = img.shape
|
|
# 10x7
|
|
# minus 1 when dealing with normal chessboard
|
|
# 115mm square
|
|
# 90mm marker
|
|
# https://docs.opencv.org/3.4/df/d4a/tutorial_charuco_detection.html
|
|
# https://docs.opencv.org/4.x/df/d4a/tutorial_charuco_detection.html
|
|
# https://docs.opencv.org/4.x/da/d13/tutorial_aruco_calibration.html
|
|
# https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
|
|
|
|
# https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html#ga93efa9b0aa890de240ca32b11253dd4a
|
|
# https://github.com/opencv/opencv/issues/22083
|
|
# OpenCV 4.10.x
|
|
# pylint: disable-next=unpacking-non-sequence
|
|
ch_corners, ch_ids, markers_corners, marker_ids = detector.detectBoard(img)
|
|
# https://docs.opencv.org/4.10.0/d9/df5/classcv_1_1aruco_1_1CharucoDetector.html
|
|
if ch_corners is not None:
|
|
# https://docs.opencv.org/4.x/d4/db2/classcv_1_1aruco_1_1Board.html
|
|
aruco.drawDetectedCornersCharuco(img, ch_corners, ch_ids, (0, 255, 0))
|
|
all_ch_corners.append(ch_corners)
|
|
all_ch_ids.append(ch_ids)
|
|
# pylint: disable-next=unpacking-non-sequence
|
|
op, ip = board.matchImagePoints(cast(Sequence[MatLike], ch_corners), ch_ids)
|
|
all_object_points.append(op)
|
|
all_image_points.append(ip)
|
|
if calibration is not None:
|
|
mtx = cast(MatLike, ak.to_numpy(calibration["camera_matrix"]))
|
|
dist = cast(
|
|
MatLike, ak.to_numpy(calibration["distortion_coefficients"])
|
|
)
|
|
ret, rvec, tvec = cv2.solvePnP(op, ip, mtx, dist)
|
|
if ret:
|
|
img = cv2.drawFrameAxes(img, mtx, dist, rvec, tvec, 0.1)
|
|
else:
|
|
logger.warning(f"Failed to draw frame axes in {img_path}")
|
|
else:
|
|
logger.warning(f"Failed to detect Charuco board in {img_path}")
|
|
continue
|
|
if markers_corners is not None:
|
|
aruco.drawDetectedMarkers(img, markers_corners, marker_ids)
|
|
output_path = OUTPUT_FOLDER / (f"{img_path.stem}_output.jpg")
|
|
logger.info(f"Saving to {output_path}")
|
|
cv2.imwrite(str(output_path), img)
|
|
|
|
# compute calibration
|
|
if calibration is None and len(all_image_points) > 0:
|
|
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(
|
|
all_object_points, all_image_points, (last_shape[0], last_shape[1]), None, None # type: ignore
|
|
) # type: ignore
|
|
logger.info(f"Camera matrix: {mtx}")
|
|
logger.info(f"Distortion coefficients: {dist}")
|
|
logger.info(f"Rotation vectors: {rvecs}")
|
|
logger.info(f"Translation vectors: {tvecs}")
|
|
parameters = {
|
|
"camera_matrix": mtx,
|
|
"distortion_coefficients": dist,
|
|
"rotation_vectors": rvecs,
|
|
"translation_vectors": tvecs,
|
|
}
|
|
ak.to_parquet([parameters], OUTPUT_FOLDER / "calibration.parquet")
|
|
else:
|
|
logger.warning(
|
|
"no calibration data calculated; either no images or already calibrated"
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|