Files
SGraFormer/common/Mydataset.py
2024-08-05 11:19:19 +08:00

361 lines
18 KiB
Python

import torch
import numpy as np
import torch.utils.data as data
from common.cameras import normalize_screen_coordinates
class ChunkedGenerator:
def __init__(self, batch_size, cameras, poses_3d, poses_2d,
chunk_length=1, pad=0, causal_shift=0,
shuffle=False, random_seed=1234,
augment=False, reverse_aug=False, kps_left=None, kps_right=None, joints_left=None, joints_right=None,
endless=False, out_all=False):
assert poses_3d is None or len(poses_3d) == len(poses_2d), (len(poses_3d), len(poses_2d))
assert cameras is None or len(cameras) == len(poses_2d)
pairs = []
self.saved_index = {}
start_index = 0
for key in poses_2d.keys():
assert poses_3d is None or poses_2d[key].shape[0] == poses_3d[key].shape[0]
n_chunks = (poses_2d[key].shape[0] + chunk_length - 1) // chunk_length
offset = (n_chunks * chunk_length - poses_2d[key].shape[0]) // 2
bounds = np.arange(n_chunks + 1) * chunk_length - offset
augment_vector = np.full(len(bounds - 1), False, dtype=bool)
reverse_augment_vector = np.full(len(bounds - 1), False, dtype=bool)
keys = np.tile(np.array(key).reshape([1, 2]), (len(bounds - 1), 1))
pairs += list(zip(keys, bounds[:-1], bounds[1:], augment_vector, reverse_augment_vector))
if reverse_aug:
pairs += list(zip(keys, bounds[:-1], bounds[1:], augment_vector, ~reverse_augment_vector))
if augment:
if reverse_aug:
pairs += list(zip(keys, bounds[:-1], bounds[1:], ~augment_vector, ~reverse_augment_vector))
else:
pairs += list(zip(keys, bounds[:-1], bounds[1:], ~augment_vector, reverse_augment_vector))
end_index = start_index + poses_3d[key].shape[0]
self.saved_index[key] = [start_index, end_index]
start_index = start_index + poses_3d[key].shape[0]
if cameras is not None:
self.batch_cam = np.empty((batch_size, cameras[key].shape[-1]))
if poses_3d is not None:
self.batch_3d = np.empty((batch_size, chunk_length, poses_3d[key].shape[-2], poses_3d[key].shape[-1]))
self.batch_2d = np.empty(
(batch_size, chunk_length + 2 * pad, poses_2d[key].shape[-3], poses_2d[key].shape[-2],
poses_2d[key].shape[-1]))
self.num_batches = (len(pairs) + batch_size - 1) // batch_size
self.batch_size = batch_size
self.random = np.random.RandomState(random_seed)
self.pairs = pairs
self.shuffle = shuffle
self.pad = pad
self.causal_shift = causal_shift
self.endless = endless
self.state = None
self.cameras = cameras
if cameras is not None:
self.cameras = cameras
self.poses_3d = poses_3d
self.poses_2d = poses_2d
self.augment = augment
self.kps_left = kps_left
self.kps_right = kps_right
self.joints_left = joints_left
self.joints_right = joints_right
self.out_all = out_all
def num_frames(self):
return self.num_batches * self.batch_size
def random_state(self):
return self.random
def set_random_state(self, random):
self.random = random
def augment_enabled(self):
return self.augment
def next_pairs(self):
if self.state is None:
if self.shuffle:
pairs = self.random.permutation(self.pairs)
else:
pairs = self.pairs
return 0, pairs
else:
return self.state
def get_batch(self, seq_i, start_3d, end_3d, flip, reverse):
subject, action = seq_i
seq_name = (subject, action)
start_2d = start_3d - self.pad - self.causal_shift # \u5f00\u59cb\u4f4d\u7f6e
end_2d = end_3d + self.pad - self.causal_shift
seq_2d = self.poses_2d[seq_name].copy()
low_2d = max(start_2d, 0)
high_2d = min(end_2d, seq_2d.shape[0])
pad_left_2d = low_2d - start_2d
pad_right_2d = end_2d - high_2d
if pad_left_2d != 0 or pad_right_2d != 0:
self.batch_2d = np.pad(seq_2d[low_2d:high_2d], ((pad_left_2d, pad_right_2d), (0, 0), (0, 0), (0, 0)),
'edge')
else:
self.batch_2d = seq_2d[low_2d:high_2d]
if flip:
self.batch_2d[:, :, :, 0] *= -1
self.batch_2d[:, :, self.kps_left + self.kps_right] = self.batch_2d[:, :, self.kps_right + self.kps_left]
if reverse:
self.batch_2d = self.batch_2d[::-1].copy()
if self.poses_3d is not None:
seq_3d = self.poses_3d[seq_name].copy()
if self.out_all:
low_3d = low_2d
high_3d = high_2d
pad_left_3d = pad_left_2d
pad_right_3d = pad_right_2d
else:
low_3d = max(start_3d, 0)
high_3d = min(end_3d, seq_3d.shape[0])
pad_left_3d = low_3d - start_3d
pad_right_3d = end_3d - high_3d
if pad_left_3d != 0 or pad_right_3d != 0:
self.batch_3d = np.pad(seq_3d[low_3d:high_3d],
((pad_left_3d, pad_right_3d), (0, 0), (0, 0)), 'edge')
else:
self.batch_3d = seq_3d[low_3d:high_3d]
if flip:
self.batch_3d[:, :, 0] *= -1
self.batch_3d[:, self.joints_left + self.joints_right] = \
self.batch_3d[:, self.joints_right + self.joints_left]
if reverse:
self.batch_3d = self.batch_3d[::-1].copy()
if self.poses_3d is None and self.cameras is None:
return None, None, self.batch_2d.copy(), action, subject
elif self.poses_3d is not None and self.cameras is None:
return np.zeros(9), self.batch_3d.copy(), self.batch_2d.copy(), action, subject, low_2d, high_2d
elif self.poses_3d is None:
return self.batch_cam, None, self.batch_2d.copy(), action, subject
else:
return self.batch_cam, self.batch_3d.copy(), self.batch_2d.copy(), action, subject
class Fusion(data.Dataset):
def __init__(self, opt, dataset, root_path, train=True):
self.hop1 = torch.tensor([[0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]])
self.hop2 = torch.tensor([[0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]])
self.hop3 = torch.tensor([[0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0],
[0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]])
self.hop4 = torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1],
[0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0],
[0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0]])
self.data_type = opt.dataset
self.train = train
self.keypoints_name = opt.keypoints
self.root_path = root_path
self.train_list = opt.subjects_train.split(',')
self.test_list = opt.subjects_test.split(',')
self.action_filter = None if opt.actions == '*' else opt.actions.split(',')
self.downsample = opt.downsample
self.subset = opt.subset
self.stride = opt.stride
self.crop_uv = opt.crop_uv
self.test_aug = opt.test_augmentation
self.pad = opt.pad
if self.train:
self.keypoints = self.prepare_data(dataset, self.train_list)
self.cameras_train, self.poses_train, self.poses_train_2d = self.fetch(dataset, self.train_list,
subset=self.subset)
self.generator = ChunkedGenerator(opt.batch_size // opt.stride, self.cameras_train, self.poses_train,
self.poses_train_2d, self.stride, pad=self.pad,
augment=opt.data_augmentation, reverse_aug=opt.reverse_augmentation,
kps_left=self.kps_left, kps_right=self.kps_right,
joints_left=self.joints_left,
joints_right=self.joints_right, out_all=opt.out_all)
print('INFO: Training on {} frames'.format(self.generator.num_frames()))
else:
self.keypoints = self.prepare_data(dataset, self.test_list)
self.cameras_test, self.poses_test, self.poses_test_2d = self.fetch(dataset, self.test_list,
subset=self.subset)
self.generator = ChunkedGenerator(opt.batch_size // opt.stride, self.cameras_test, self.poses_test,
self.poses_test_2d,
pad=self.pad, augment=False, kps_left=self.kps_left,
kps_right=self.kps_right, joints_left=self.joints_left,
joints_right=self.joints_right)
self.key_index = self.generator.saved_index
print('INFO: Testing on {} frames'.format(self.generator.num_frames()))
def prepare_data(self, dataset, folder_list):
for subject in folder_list:
for action in dataset[subject].keys():
dataset[subject][action]['positions'][:, 1:] -= dataset[subject][action]['positions'][:, :1]
keypoints = np.load(self.root_path + 'data_2d_' + self.data_type + '_' + self.keypoints_name + '.npz',
allow_pickle=True)
keypoints_symmetry = keypoints['metadata'].item()['keypoints_symmetry']
self.kps_left, self.kps_right = list(keypoints_symmetry[0]), list(keypoints_symmetry[1])
self.joints_left, self.joints_right = list(dataset.skeleton().joints_left()), list(
dataset.skeleton().joints_right())
keypoints = keypoints['positions_2d'].item()
for subject in folder_list:
for action in dataset[subject].keys():
mocap_length = dataset[subject][action]['positions'].shape[0]
for cam_idx in range(len(keypoints[subject][action])):
assert keypoints[subject][action][cam_idx].shape[0] >= mocap_length
if keypoints[subject][action][cam_idx].shape[0] > mocap_length:
keypoints[subject][action][cam_idx] = keypoints[subject][action][cam_idx][:mocap_length]
for subject in keypoints.keys():
for action in keypoints[subject]:
for cam_idx, kps in enumerate(keypoints[subject][action]):
cam = dataset.cameras()[subject][cam_idx]
if self.crop_uv == 0:
kps[..., :2] = normalize_screen_coordinates(kps[..., :2], w=cam['res_w'], h=cam['res_h'])
keypoints[subject][action][cam_idx] = kps
for subject in folder_list:
for action in dataset[subject].keys():
positions_2d_pairs = []
for cam_idx in range(len(keypoints[subject][action])):
positions_2d_pairs.append(keypoints[subject][action][cam_idx])
keypoints[subject][action].append(
np.array(positions_2d_pairs).transpose((1, 0, 2,3)))
return keypoints
def fetch(self, dataset, subjects, subset=1, ):
out_poses_3d = {}
out_poses_2d = {}
out_camera_params = {}
for subject in subjects:
for action in self.keypoints[subject].keys():
poses_2d = self.keypoints[subject][action][4]
out_poses_2d[(subject, action)] = poses_2d
poses_3d = dataset[subject][action]['positions']
out_poses_3d[(subject, action)] = poses_3d
if len(out_camera_params) == 0:
out_camera_params = None
downsample = 1
if downsample:
pass
return out_camera_params, out_poses_3d, out_poses_2d
def hop_normalize(self, x1, x2, x3, x4):
x1 = x1 / torch.sum(x1, dim=1)
x2 = x2 / torch.sum(x1, dim=1)
x3 = x3 / torch.sum(x1, dim=1)
x4 = x4 / torch.sum(x1, dim=1)
return torch.cat((x1.unsqueeze(0), x2.unsqueeze(0), x3.unsqueeze(0), x4.unsqueeze(0)), dim=0)
def __len__(self):
return len(self.generator.pairs)
def __getitem__(self, index):
seq_name, start_3d, end_3d, flip, reverse = self.generator.pairs[index]
cam, gt_3D, input_2D, action, subject, low_2d, high_2d = self.generator.get_batch(seq_name, start_3d, end_3d,
False, False)
if self.train == False and self.test_aug:
_, _, input_2D_aug, _, _, _, _ = self.generator.get_batch(seq_name, start_3d, end_3d, flip=False,
reverse=False)
input_2D = np.concatenate((np.expand_dims(input_2D, axis=0), np.expand_dims(input_2D_aug, axis=0)), 0)
bb_box = np.array([0, 0, 1, 1])
input_2D_update = input_2D
hops = self.hop_normalize(self.hop1, self.hop2, self.hop3, self.hop4)
scale = np.float64(1.0)
return cam, gt_3D, input_2D_update, action, subject, scale, bb_box, low_2d, high_2d, hops