Greatly improved triangulation.
This commit is contained in:
@ -357,7 +357,9 @@ def main():
|
||||
poses3D = np.zeros([1, len(joint_names_3d), 4])
|
||||
poses2D = np.zeros([len(images_2d), 1, len(joint_names_3d), 3])
|
||||
else:
|
||||
poses3D = triangulate_poses.get_3d_pose(poses_2d, label["cameras"], joint_names_2d)
|
||||
poses3D = triangulate_poses.get_3d_pose(
|
||||
poses_2d, label["cameras"], roomparams, joint_names_2d
|
||||
)
|
||||
poses2D = []
|
||||
for cam in label["cameras"]:
|
||||
poses_2d, _ = utils_pose.project_poses(poses3D, cam)
|
||||
|
||||
@ -439,7 +439,9 @@ def main():
|
||||
poses3D = np.zeros([1, len(joint_names_3d), 4])
|
||||
poses2D = np.zeros([len(images_2d), 1, len(joint_names_3d), 3])
|
||||
else:
|
||||
poses3D = triangulate_poses.get_3d_pose(poses_2d, camparams, joint_names_2d)
|
||||
poses3D = triangulate_poses.get_3d_pose(
|
||||
poses_2d, camparams, roomparams, joint_names_2d
|
||||
)
|
||||
poses2D = []
|
||||
for cam in camparams:
|
||||
poses_2d, _ = utils_pose.project_poses(poses3D, cam)
|
||||
|
||||
@ -1,4 +1,6 @@
|
||||
import copy
|
||||
import math
|
||||
import time
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
@ -8,8 +10,6 @@ from skelda import utils_pose
|
||||
# ==================================================================================================
|
||||
|
||||
core_joints = [
|
||||
"shoulder_middle",
|
||||
"hip_middle",
|
||||
"shoulder_left",
|
||||
"shoulder_right",
|
||||
"hip_left",
|
||||
@ -64,7 +64,7 @@ def get_camera_P(cam):
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def calc_pair_score(pair, poses_2d, camparams, joint_names_2d):
|
||||
def calc_pair_score(pair, poses_2d, camparams, roomparams, joint_names_2d, use_joints):
|
||||
"""Triangulates a pair of persons and scores them based on the reprojection error"""
|
||||
|
||||
cam1 = camparams[pair[0][0]]
|
||||
@ -73,45 +73,77 @@ def calc_pair_score(pair, poses_2d, camparams, joint_names_2d):
|
||||
pose2 = np.array(poses_2d[pair[0][1]][pair[0][3]])
|
||||
|
||||
# Select core joints
|
||||
jids = [joint_names_2d.index(j) for j in core_joints]
|
||||
jids = [joint_names_2d.index(j) for j in use_joints]
|
||||
pose1 = pose1[jids]
|
||||
pose2 = pose2[jids]
|
||||
|
||||
poses_3d, score = calc_pose_scored(pose1, pose2, cam1, cam2)
|
||||
poses_3d, score = calc_pose_scored(pose1, pose2, cam1, cam2, roomparams)
|
||||
return poses_3d, score
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def calc_pose_scored(pose1, pose2, cam1, cam2):
|
||||
def calc_pose_scored(pose1, pose2, cam1, cam2, roomparams):
|
||||
"""Triangulates a pair of persons and scores them based on the reprojection error"""
|
||||
|
||||
# Mask out invisible joints
|
||||
mask1a = pose1[:, 2] >= 0.1
|
||||
mask2a = pose2[:, 2] >= 0.1
|
||||
mask = mask1a & mask2a
|
||||
|
||||
# If no joints are visible return a low score
|
||||
if np.sum(mask) == 0:
|
||||
pose3d = np.zeros([len(pose1), 4])
|
||||
score = 0.0
|
||||
return pose3d, score
|
||||
|
||||
# Triangulate points
|
||||
points1 = pose1[:, 0:2].T
|
||||
points2 = pose2[:, 0:2].T
|
||||
points1 = pose1[mask, 0:2].T
|
||||
points2 = pose2[mask, 0:2].T
|
||||
P1 = get_camera_P(cam1)
|
||||
P2 = get_camera_P(cam2)
|
||||
points3d = cv2.triangulatePoints(P1, P2, points1, points2)
|
||||
points3d = points3d / points3d[3, :]
|
||||
points3d = points3d[0:3, :].T
|
||||
pose3d = np.zeros([len(pose1), 4])
|
||||
pose3d[mask] = np.concatenate([points3d, np.ones([points3d.shape[0], 1])], axis=-1)
|
||||
|
||||
# If the triangulated points are outside the room drop it
|
||||
mean = np.mean(pose3d[mask][:, 0:3], axis=0)
|
||||
mins = np.min(pose3d[mask][:, 0:3], axis=0)
|
||||
maxs = np.max(pose3d[mask][:, 0:3], axis=0)
|
||||
rsize = np.array(roomparams["room_size"]) / 2
|
||||
rcent = np.array(roomparams["room_center"])
|
||||
center_outside = np.any((mean > rsize + rcent) | (mean < -rsize + rcent))
|
||||
limb_outside = np.any((maxs > rsize + rcent + 0.1) | (mins < -rsize + rcent - 0.1))
|
||||
if center_outside or limb_outside:
|
||||
pose3d[:, 3] = 0.001
|
||||
score = 0.001
|
||||
return pose3d, score
|
||||
|
||||
# Calculate reprojection error
|
||||
poses_3d = np.expand_dims(points3d, axis=0)
|
||||
poses_3d = np.concatenate([poses_3d, np.ones([1, poses_3d.shape[1], 1])], axis=-1)
|
||||
poses_3d = np.expand_dims(pose3d, axis=0)
|
||||
repro1, _ = utils_pose.project_poses(poses_3d, cam1)
|
||||
repro2, _ = utils_pose.project_poses(poses_3d, cam2)
|
||||
repro1 = repro1[0]
|
||||
repro2 = repro2[0]
|
||||
mask1 = pose1[:, 2] > 0.1
|
||||
mask2 = pose2[:, 2] > 0.1
|
||||
mask = mask1 & mask2
|
||||
error1 = np.linalg.norm(pose1[mask, 0:2] - repro1[mask, 0:2], axis=1)
|
||||
error2 = np.linalg.norm(pose2[mask, 0:2] - repro2[mask, 0:2], axis=1)
|
||||
|
||||
# Set errors of invisible reprojections to a high value
|
||||
penalty = (cam1["width"] + cam1["height"]) / 2
|
||||
mask1b = (repro1[:, 2] < 0.1)[mask]
|
||||
mask2b = (repro2[:, 2] < 0.1)[mask]
|
||||
error1[mask1b] = penalty
|
||||
error2[mask2b] = penalty
|
||||
|
||||
# Convert errors to a score
|
||||
error1 = error1 / ((cam1["width"] + cam1["height"]) / 2)
|
||||
error2 = error2 / ((cam2["width"] + cam2["height"]) / 2)
|
||||
scale = (cam1["width"] + cam1["height"]) / 2
|
||||
error1 = error1.clip(0, scale / 4)
|
||||
error2 = error2.clip(0, scale / 4)
|
||||
error1 = error1 / scale
|
||||
error2 = error2 / scale
|
||||
error = (error1 + error2) / 2
|
||||
scores = 1.0 / (1.0 + error * 10)
|
||||
score = np.mean(scores)
|
||||
@ -119,9 +151,9 @@ def calc_pose_scored(pose1, pose2, cam1, cam2):
|
||||
# Add score to 3D pose
|
||||
full_scores = np.zeros([poses_3d.shape[1], 1])
|
||||
full_scores[mask] = np.expand_dims(scores, axis=-1)
|
||||
pose_3d = np.concatenate([points3d, full_scores], axis=-1)
|
||||
pose3d[:, 3] = full_scores[:, 0]
|
||||
|
||||
return pose_3d, score
|
||||
return pose3d, score
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
@ -131,12 +163,13 @@ def calc_grouping(all_pairs):
|
||||
"""Groups pairs that share a person"""
|
||||
|
||||
# Calculate the pose center for each pair
|
||||
min_score = 0.9
|
||||
for i in range(len(all_pairs)):
|
||||
pair = all_pairs[i]
|
||||
pose_3d = pair[2][0]
|
||||
mask = pose_3d[:, 2] > 0.1
|
||||
mask = pose_3d[:, 3] > min_score
|
||||
center = np.mean(pose_3d[mask, 0:3], axis=0)
|
||||
all_pairs[i] = all_pairs[i] + (center,)
|
||||
all_pairs[i] = all_pairs[i] + [center]
|
||||
|
||||
groups = []
|
||||
for i in range(len(all_pairs)):
|
||||
@ -144,33 +177,43 @@ def calc_grouping(all_pairs):
|
||||
|
||||
# Create new group if non exists
|
||||
if len(groups) == 0:
|
||||
groups.append([pair])
|
||||
groups.append([pair[4], pair[2][0], [pair]])
|
||||
continue
|
||||
|
||||
# Check if the pair belongs to an existing group
|
||||
matched = False
|
||||
# Check if the pair matches to an existing group
|
||||
max_center_dist = 0.9
|
||||
max_joint_avg_dist = 0.3
|
||||
best_dist = math.inf
|
||||
best_group = -1
|
||||
for j in range(len(groups)):
|
||||
g0 = groups[j][0]
|
||||
center0 = g0[3]
|
||||
center1 = pair[3]
|
||||
if np.linalg.norm(center0 - center1) < 0.5:
|
||||
pose0 = g0[2][0]
|
||||
g0 = groups[j]
|
||||
center0 = g0[0]
|
||||
center1 = pair[4]
|
||||
if np.linalg.norm(center0 - center1) < max_center_dist:
|
||||
pose0 = g0[1]
|
||||
pose1 = pair[2][0]
|
||||
|
||||
# Calculate the distance between the two poses
|
||||
mask0 = pose0[:, 3] > 0.1
|
||||
mask1 = pose1[:, 3] > 0.1
|
||||
mask0 = pose0[:, 3] > min_score
|
||||
mask1 = pose1[:, 3] > min_score
|
||||
mask = mask0 & mask1
|
||||
dists = np.linalg.norm(pose0[mask, 0:3] - pose1[mask, 0:3], axis=1)
|
||||
dist = np.mean(dists)
|
||||
if dist < 0.3:
|
||||
groups[j].append(pair)
|
||||
matched = True
|
||||
break
|
||||
|
||||
# Create new group if no match was found
|
||||
if not matched:
|
||||
groups.append([pair])
|
||||
if dist < max_joint_avg_dist:
|
||||
if dist < best_dist:
|
||||
best_dist = dist
|
||||
best_group = j
|
||||
if best_group >= 0:
|
||||
# Add pair to existing group and update the mean positions
|
||||
group = groups[best_group]
|
||||
new_center = (group[0] * len(group[1]) + pair[4]) / (len(group[1]) + 1)
|
||||
new_pose = (group[1] * len(group[1]) + pair[2][0]) / (len(group[1]) + 1)
|
||||
group[2].append(pair)
|
||||
group[0] = new_center
|
||||
group[1] = new_pose
|
||||
else:
|
||||
# Create new group if no match was found
|
||||
groups.append([pair[4], pair[2][0], [pair]])
|
||||
|
||||
return groups
|
||||
|
||||
@ -178,30 +221,51 @@ def calc_grouping(all_pairs):
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def merge_group(group, poses_2d, camparams):
|
||||
def merge_group(poses_3d: np.ndarray):
|
||||
"""Merges a group of poses into a single pose"""
|
||||
|
||||
# Calculate full 3D poses
|
||||
poses_3d = []
|
||||
for pair in group:
|
||||
cam1 = camparams[pair[0][0]]
|
||||
cam2 = camparams[pair[0][1]]
|
||||
pose1 = np.array(poses_2d[pair[0][0]][pair[0][2]])
|
||||
pose2 = np.array(poses_2d[pair[0][1]][pair[0][3]])
|
||||
# Merge poses to create initial pose
|
||||
# Use only those triangulations with a high score
|
||||
min_score = 0.9
|
||||
mask = poses_3d[:, :, 3:4] > min_score
|
||||
sum_poses = np.sum(poses_3d * mask, axis=0)
|
||||
sum_mask = np.sum(mask, axis=0)
|
||||
initial_pose_3d = np.divide(
|
||||
sum_poses, sum_mask, where=(sum_mask > 0), out=np.zeros_like(sum_poses)
|
||||
)
|
||||
|
||||
pose_3d, _ = calc_pose_scored(pose1, pose2, cam1, cam2)
|
||||
poses_3d.append(pose_3d)
|
||||
# Drop outliers that are far away from the other proposals
|
||||
max_dist = 0.3
|
||||
distances = np.linalg.norm(
|
||||
poses_3d[:, :, :3] - initial_pose_3d[np.newaxis, :, :3], axis=2
|
||||
)
|
||||
dist_mask = distances <= max_dist
|
||||
mask = mask & np.expand_dims(dist_mask, axis=-1)
|
||||
|
||||
# Merge poses
|
||||
pose_3d = np.mean(poses_3d, axis=0)
|
||||
# Select the best-k proposals for each joint that are closest to the initial pose
|
||||
keep_best = 3
|
||||
sorted_indices = np.argsort(distances, axis=0)
|
||||
best_k_mask = np.zeros_like(mask, dtype=bool)
|
||||
num_joints = poses_3d.shape[1]
|
||||
for i in range(num_joints):
|
||||
valid_indices = sorted_indices[:, i][mask[sorted_indices[:, i], i, 0]]
|
||||
best_k_mask[valid_indices[:keep_best], i, 0] = True
|
||||
mask = mask & best_k_mask
|
||||
|
||||
return pose_3d
|
||||
# Final pose computation with combined masks
|
||||
sum_poses = np.sum(poses_3d * mask, axis=0)
|
||||
sum_mask = np.sum(mask, axis=0)
|
||||
final_pose_3d = np.divide(
|
||||
sum_poses, sum_mask, where=(sum_mask > 0), out=np.zeros_like(sum_poses)
|
||||
)
|
||||
|
||||
return final_pose_3d
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def get_3d_pose(poses_2d, camparams, joint_names_2d):
|
||||
def get_3d_pose(poses_2d, camparams, roomparams, joint_names_2d):
|
||||
|
||||
# Undistort 2D points
|
||||
for i, cam in enumerate(camparams):
|
||||
@ -220,13 +284,15 @@ def get_3d_pose(poses_2d, camparams, joint_names_2d):
|
||||
for l in range(len(poses2)):
|
||||
pid1 = sum(num_persons[:i]) + k
|
||||
pid2 = sum(num_persons[:j]) + l
|
||||
all_pairs.append(((i, j, k, l), (pid1, pid2)))
|
||||
all_pairs.append([(i, j, k, l), (pid1, pid2)])
|
||||
|
||||
# Calculate pair scores
|
||||
for i in range(len(all_pairs)):
|
||||
pair = all_pairs[i]
|
||||
pose_3d, score = calc_pair_score(pair, poses_2d, camparams, joint_names_2d)
|
||||
all_pairs[i] = all_pairs[i] + ((pose_3d, score),)
|
||||
pose_3d, score = calc_pair_score(
|
||||
pair, poses_2d, camparams, roomparams, joint_names_2d, core_joints
|
||||
)
|
||||
all_pairs[i].append((pose_3d, score))
|
||||
|
||||
# import draw_utils
|
||||
# poses3D = np.array([pose_3d])
|
||||
@ -239,13 +305,25 @@ def get_3d_pose(poses_2d, camparams, joint_names_2d):
|
||||
min_score = 0.9
|
||||
all_pairs = [p for p in all_pairs if p[2][1] > min_score]
|
||||
|
||||
# Calculate full 3D poses
|
||||
poses_3d = []
|
||||
for pair in all_pairs:
|
||||
cam1 = camparams[pair[0][0]]
|
||||
cam2 = camparams[pair[0][1]]
|
||||
pose1 = np.array(poses_2d[pair[0][0]][pair[0][2]])
|
||||
pose2 = np.array(poses_2d[pair[0][1]][pair[0][3]])
|
||||
|
||||
pose_3d, _ = calc_pose_scored(pose1, pose2, cam1, cam2, roomparams)
|
||||
pair.append(pose_3d)
|
||||
|
||||
# Group pairs that share a person
|
||||
groups = calc_grouping(all_pairs)
|
||||
|
||||
# Merge groups
|
||||
poses_3d = []
|
||||
for group in groups:
|
||||
pose_3d = merge_group(group, poses_2d, camparams)
|
||||
poses = np.array([p[3] for p in group[2]])
|
||||
pose_3d = merge_group(poses)
|
||||
poses_3d.append(pose_3d)
|
||||
|
||||
if len(poses_3d) > 0:
|
||||
|
||||
Reference in New Issue
Block a user