Fixing installation.
This commit is contained in:
@ -1,42 +0,0 @@
|
||||
# ROS
|
||||
|
||||
<br>
|
||||
|
||||
## Build
|
||||
|
||||
- Install system: \
|
||||
(https://developer.nvidia.com/embedded/learn/get-started-jetson-agx-orin-devkit)
|
||||
|
||||
- Install _docker_: \
|
||||
(https://docs.docker.com/engine/install/ubuntu/#install-using-the-convenience-script)
|
||||
|
||||
- Install _nvidia-container-toolkit_: \
|
||||
(https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
|
||||
|
||||
- Enable GPU-access for docker building:
|
||||
|
||||
Run `sudo nano /etc/docker/daemon.json` and add:
|
||||
|
||||
```json
|
||||
{
|
||||
"runtimes": {
|
||||
"nvidia": {
|
||||
"path": "nvidia-container-runtime",
|
||||
"runtimeArgs": []
|
||||
}
|
||||
},
|
||||
"default-runtime": "nvidia"
|
||||
}
|
||||
```
|
||||
|
||||
Restart docker: `sudo systemctl restart docker`
|
||||
|
||||
- Install _vs-code_: \
|
||||
(https://code.visualstudio.com/docs/setup/linux)
|
||||
|
||||
|
||||
- Test docker is working: \
|
||||
```bash
|
||||
sudo docker run -it --rm --net=host --runtime nvidia -e DISPLAY=$DISPLAY -v /tmp/.X11-unix/:/tmp/.X11-unix nvcr.io/nvidia/l4t-base:35.4.1
|
||||
sudo docker run --runtime nvidia -it --rm --network=host nvcr.io/nvidia/l4t-pytorch:r35.1.0-pth1.11-py3
|
||||
```
|
||||
84
ros/README-JetsonOrin-Setup.md
Normal file
84
ros/README-JetsonOrin-Setup.md
Normal file
@ -0,0 +1,84 @@
|
||||
# Setup with Nvidia-Jetson-Orin
|
||||
|
||||
Initial setup and installation of _RapidPoseTriangulation_ on a _Nvidia Jetson_ device. \
|
||||
Tested with a _Jetson AGX Orin Developer Kit_ module.
|
||||
|
||||
<br>
|
||||
|
||||
## Base installation
|
||||
|
||||
- Install newest software image: \
|
||||
(https://developer.nvidia.com/sdk-manager)
|
||||
|
||||
- Initialize system: \
|
||||
(https://developer.nvidia.com/embedded/learn/get-started-jetson-agx-orin-devkit)
|
||||
|
||||
- Install basic tools:
|
||||
```bash
|
||||
sudo apt install -y curl nano wget git
|
||||
sudo apt install -y terminator
|
||||
```
|
||||
|
||||
- Enable _docker_ without _sudo_: \
|
||||
(https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user)
|
||||
|
||||
- Enable GPU-access for docker building:
|
||||
|
||||
Run `sudo nano /etc/docker/daemon.json` and add:
|
||||
|
||||
```json
|
||||
{
|
||||
"runtimes": {
|
||||
"nvidia": {
|
||||
"args": [],
|
||||
"path": "nvidia-container-runtime"
|
||||
}
|
||||
},
|
||||
"default-runtime": "nvidia"
|
||||
}
|
||||
```
|
||||
|
||||
Restart docker: `sudo systemctl restart docker`
|
||||
|
||||
- Install _vs-code_: \
|
||||
(https://code.visualstudio.com/docs/setup/linux)
|
||||
|
||||
|
||||
- Test docker is working:
|
||||
|
||||
```bash
|
||||
docker run -it --rm --runtime=nvidia --network=host -e DISPLAY=$DISPLAY -v /tmp/.X11-unix/:/tmp/.X11-unix nvcr.io/nvidia/l4t-base:r36.2.0
|
||||
docker run -it --rm --runtime=nvidia --network=host nvcr.io/nvidia/l4t-ml:r36.2.0-py3
|
||||
|
||||
|
||||
docker run -it --rm --runtime=nvidia --network=host dustynv/l4t-pytorch:r36.4.0
|
||||
```
|
||||
|
||||
- Check _cuda_ access in container:
|
||||
|
||||
```bash
|
||||
python3 -c 'import torch; print(torch.cuda.is_available());'
|
||||
```
|
||||
|
||||
|
||||
<br>
|
||||
|
||||
## RPT installation
|
||||
|
||||
- Build docker container:
|
||||
|
||||
```bash
|
||||
docker build --progress=plain -f ros/dockerfile_jetson -t rapidposetriangulation .
|
||||
./run_container.sh
|
||||
```
|
||||
|
||||
- Build _rpt_ package inside container:
|
||||
|
||||
```bash
|
||||
cd /RapidPoseTriangulation/swig/ && make all && cd ../tests/ && python3 test_interface.py
|
||||
```
|
||||
|
||||
- Test with samples:
|
||||
```bash
|
||||
python3 /RapidPoseTriangulation/scripts/test_triangulate.py
|
||||
```
|
||||
@ -1,4 +1,4 @@
|
||||
FROM nvcr.io/nvidia/l4t-pytorch:r35.1.0-pth1.11-py3
|
||||
FROM dustynv/l4t-pytorch:r36.4.0
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
ENV LANG=C.UTF-8
|
||||
@ -7,24 +7,20 @@ WORKDIR /
|
||||
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends feh
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends python3-opencv
|
||||
RUN pip uninstall -y opencv-python && pip install --no-cache "opencv-python<4.3"
|
||||
|
||||
# Show matplotlib images
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends python3-tk
|
||||
|
||||
# Update pip to allow installation of skelda in editable mode
|
||||
RUN pip3 install --upgrade --no-cache-dir pip
|
||||
|
||||
# Install MMPose
|
||||
# ENV FORCE_CUDA="1"
|
||||
# ENV MMCV_WITH_OPS=1
|
||||
ENV FORCE_CUDA="1"
|
||||
ENV MMCV_WITH_OPS=1
|
||||
RUN pip3 install --upgrade --no-cache-dir openmim
|
||||
RUN mim install mmengine
|
||||
RUN mim install "mmcv>=2,<2.2.0"
|
||||
RUN mim install "mmdet>=3"
|
||||
RUN mim install "mmpose>=1.1.0"
|
||||
# Fix an error when importing mmpose
|
||||
RUN pip3 install --upgrade --no-cache-dir numpy scipy
|
||||
RUN pip3 install --upgrade --no-cache-dir "numpy<2" scipy
|
||||
RUN git clone --depth=1 --branch=main https://github.com/open-mmlab/mmpose.git
|
||||
|
||||
# Download pretrained model
|
||||
@ -32,13 +28,10 @@ COPY scripts/utils_2d_pose.py /
|
||||
RUN python3 -c "from utils_2d_pose import load_model; load_model();"
|
||||
RUN python3 -c "from utils_2d_pose import load_wb_model; load_wb_model();"
|
||||
|
||||
# Fix an undefined symbol error with ompi
|
||||
RUN echo "ldconfig" >> ~/.bashrc
|
||||
|
||||
# Install swig and later dependencies
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends build-essential
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends swig
|
||||
# RUN apt-get update && apt-get install -y --no-install-recommends libopencv-dev
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libopencv-dev
|
||||
|
||||
COPY ./skelda/ /skelda/
|
||||
RUN pip3 install --no-cache-dir -e /skelda/
|
||||
|
||||
Reference in New Issue
Block a user