Using bayer encoding for images.
This commit is contained in:
5218
media/RESULTS.md
5218
media/RESULTS.md
File diff suppressed because it is too large
Load Diff
@ -61,7 +61,7 @@ datasets = {
|
||||
"human36m": {
|
||||
"path": "/datasets/human36m/skelda/pose_test.json",
|
||||
"take_interval": 5,
|
||||
"min_match_score": 0.94,
|
||||
"min_match_score": 0.95,
|
||||
"min_group_size": 1,
|
||||
"min_bbox_score": 0.4,
|
||||
"min_bbox_area": 0.1 * 0.1,
|
||||
@ -73,6 +73,7 @@ datasets = {
|
||||
# "cams": ["00_03", "00_06", "00_12"],
|
||||
# "cams": ["00_03", "00_06", "00_12", "00_13", "00_23", "00_15", "00_10", "00_21", "00_09", "00_01"],
|
||||
"take_interval": 3,
|
||||
"min_match_score": 0.95,
|
||||
"use_scenes": ["160906_pizza1", "160422_haggling1", "160906_ian5"],
|
||||
"min_group_size": 1,
|
||||
# "min_group_size": 4,
|
||||
@ -88,6 +89,7 @@ datasets = {
|
||||
"campus": {
|
||||
"path": "/datasets/campus/skelda/test.json",
|
||||
"take_interval": 1,
|
||||
"min_match_score": 0.90,
|
||||
"min_bbox_score": 0.5,
|
||||
},
|
||||
"shelf": {
|
||||
@ -109,6 +111,7 @@ datasets = {
|
||||
"tsinghua": {
|
||||
"path": "/datasets/tsinghua/skelda/test.json",
|
||||
"take_interval": 3,
|
||||
"min_match_score": 0.95,
|
||||
"min_group_size": 2,
|
||||
},
|
||||
"human36m_wb": {
|
||||
@ -122,7 +125,7 @@ datasets = {
|
||||
"take_interval": 2,
|
||||
"subset": "tagging",
|
||||
"min_group_size": 2,
|
||||
"min_bbox_score": 0.25,
|
||||
"min_bbox_score": 0.2,
|
||||
"min_bbox_area": 0.05 * 0.05,
|
||||
},
|
||||
"egohumans_legoassemble": {
|
||||
@ -343,19 +346,32 @@ def main():
|
||||
# Print a dataset sample for debugging
|
||||
print(labels[0])
|
||||
|
||||
print("\nPrefetching images ...")
|
||||
for label in tqdm.tqdm(labels):
|
||||
# If the images are stored on a HDD, it sometimes takes a while to load them
|
||||
# Prefetching them results in more stable timings of the following steps
|
||||
# To prevent memory overflow, the code only loads the images, but does not store them
|
||||
try:
|
||||
for i in range(len(label["imgpaths"])):
|
||||
imgpath = label["imgpaths"][i]
|
||||
img = test_triangulate.load_image(imgpath)
|
||||
except cv2.error:
|
||||
print("One of the paths not found:", label["imgpaths"])
|
||||
continue
|
||||
time.sleep(3)
|
||||
|
||||
print("\nCalculating 2D predictions ...")
|
||||
all_poses_2d = []
|
||||
times = []
|
||||
for label in tqdm.tqdm(labels):
|
||||
images_2d = []
|
||||
|
||||
start = time.time()
|
||||
try:
|
||||
start = time.time()
|
||||
for i in range(len(label["imgpaths"])):
|
||||
imgpath = label["imgpaths"][i]
|
||||
img = test_triangulate.load_image(imgpath)
|
||||
images_2d.append(img)
|
||||
time_imgs = time.time() - start
|
||||
except cv2.error:
|
||||
print("One of the paths not found:", label["imgpaths"])
|
||||
continue
|
||||
@ -373,7 +389,16 @@ def main():
|
||||
cam["K"][0][2] = cam["K"][0][2] * (1000 / ishape[1])
|
||||
images_2d[i] = cv2.resize(img, (1000, 1000))
|
||||
|
||||
# Convert image format to Bayer encoding to simulate real camera input
|
||||
# This also resulted in notably better MPJPE results in most cases, presumbly since the
|
||||
# demosaicing algorithm from OpenCV is better than the default one from the cameras
|
||||
for i in range(len(images_2d)):
|
||||
images_2d[i] = test_triangulate.rgb2bayer(images_2d[i])
|
||||
time_imgs = time.time() - start
|
||||
|
||||
start = time.time()
|
||||
for i in range(len(images_2d)):
|
||||
images_2d[i] = test_triangulate.bayer2rgb(images_2d[i])
|
||||
poses_2d = utils_2d_pose.get_2d_pose(kpt_model, images_2d)
|
||||
poses_2d = test_triangulate.update_keypoints(poses_2d, joint_names_2d)
|
||||
time_2d = time.time() - start
|
||||
|
||||
@ -227,6 +227,23 @@ def load_image(path: str):
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def rgb2bayer(img):
|
||||
bayer = np.zeros((img.shape[0], img.shape[1]), dtype=img.dtype)
|
||||
bayer[0::2, 0::2] = img[0::2, 0::2, 0]
|
||||
bayer[0::2, 1::2] = img[0::2, 1::2, 1]
|
||||
bayer[1::2, 0::2] = img[1::2, 0::2, 1]
|
||||
bayer[1::2, 1::2] = img[1::2, 1::2, 2]
|
||||
return bayer
|
||||
|
||||
|
||||
def bayer2rgb(bayer):
|
||||
img = cv2.cvtColor(bayer, cv2.COLOR_BayerBG2RGB)
|
||||
return img
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def update_keypoints(poses_2d: list, joint_names: List[str]) -> list:
|
||||
new_views = []
|
||||
for view in poses_2d:
|
||||
@ -314,6 +331,8 @@ def main():
|
||||
for i in range(len(sample["cameras_color"])):
|
||||
imgpath = sample["imgpaths_color"][i]
|
||||
img = load_image(imgpath)
|
||||
img = rgb2bayer(img)
|
||||
img = bayer2rgb(img)
|
||||
images_2d.append(img)
|
||||
|
||||
# Get 2D poses
|
||||
|
||||
Reference in New Issue
Block a user