Scale 3d score with 2d scores.
This commit is contained in:
3624
media/RESULTS.md
3624
media/RESULTS.md
File diff suppressed because it is too large
Load Diff
@ -1429,8 +1429,12 @@ std::pair<std::vector<std::array<float, 4>>, float> TriangulatorInternal::triang
|
|||||||
{
|
{
|
||||||
if (mask[i])
|
if (mask[i])
|
||||||
{
|
{
|
||||||
float score = 0.5 * (score1[i] + score2[i]);
|
float scoreT = 0.5 * (score1[i] + score2[i]);
|
||||||
pose3d[i][3] = score;
|
float scoreP = 0.5 * (pose1[i][2] + pose2[i][2]);
|
||||||
|
|
||||||
|
// Since the triangulation score is less sensitive and generally higher,
|
||||||
|
// weight it stronger to balance the two scores.
|
||||||
|
pose3d[i][3] = 0.9 * scoreT + 0.1 * scoreP;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@ -41,7 +41,7 @@ default_min_bbox_score = 0.3
|
|||||||
|
|
||||||
# Describes how good two 2D poses need to match each other to create a valid triangulation
|
# Describes how good two 2D poses need to match each other to create a valid triangulation
|
||||||
# If the quality of the 2D detections is poor, use a lower value
|
# If the quality of the 2D detections is poor, use a lower value
|
||||||
default_min_match_score = 0.94
|
default_min_match_score = 0.91
|
||||||
|
|
||||||
# Describes the minimum number of camera pairs that need to detect the same person
|
# Describes the minimum number of camera pairs that need to detect the same person
|
||||||
# If the number of cameras is high, and the views are not occluded, use a higher value
|
# If the number of cameras is high, and the views are not occluded, use a higher value
|
||||||
@ -55,7 +55,7 @@ datasets = {
|
|||||||
"human36m": {
|
"human36m": {
|
||||||
"path": "/datasets/human36m/skelda/pose_test.json",
|
"path": "/datasets/human36m/skelda/pose_test.json",
|
||||||
"take_interval": 5,
|
"take_interval": 5,
|
||||||
"min_match_score": 0.95,
|
"min_match_score": 0.92,
|
||||||
"min_group_size": 1,
|
"min_group_size": 1,
|
||||||
"min_bbox_score": 0.4,
|
"min_bbox_score": 0.4,
|
||||||
"min_bbox_area": 0.1 * 0.1,
|
"min_bbox_area": 0.1 * 0.1,
|
||||||
@ -68,7 +68,7 @@ datasets = {
|
|||||||
# "cams": ["00_03", "00_06", "00_12", "00_13", "00_23", "00_15", "00_10", "00_21", "00_09", "00_01"],
|
# "cams": ["00_03", "00_06", "00_12", "00_13", "00_23", "00_15", "00_10", "00_21", "00_09", "00_01"],
|
||||||
# "cams": [],
|
# "cams": [],
|
||||||
"take_interval": 3,
|
"take_interval": 3,
|
||||||
"min_match_score": 0.95,
|
"min_match_score": 0.92,
|
||||||
"use_scenes": ["160906_pizza1", "160422_haggling1", "160906_ian5"],
|
"use_scenes": ["160906_pizza1", "160422_haggling1", "160906_ian5"],
|
||||||
"min_group_size": 1,
|
"min_group_size": 1,
|
||||||
# "min_group_size": 4,
|
# "min_group_size": 4,
|
||||||
@ -79,25 +79,25 @@ datasets = {
|
|||||||
"path": "/datasets/mvor/skelda/all.json",
|
"path": "/datasets/mvor/skelda/all.json",
|
||||||
"take_interval": 1,
|
"take_interval": 1,
|
||||||
"with_depth": False,
|
"with_depth": False,
|
||||||
"min_match_score": 0.85,
|
"min_match_score": 0.80,
|
||||||
"min_bbox_score": 0.25,
|
"min_bbox_score": 0.25,
|
||||||
},
|
},
|
||||||
"campus": {
|
"campus": {
|
||||||
"path": "/datasets/campus/skelda/test.json",
|
"path": "/datasets/campus/skelda/test.json",
|
||||||
"take_interval": 1,
|
"take_interval": 1,
|
||||||
"min_match_score": 0.92,
|
"min_match_score": 0.89,
|
||||||
"min_bbox_score": 0.5,
|
"min_bbox_score": 0.5,
|
||||||
},
|
},
|
||||||
"shelf": {
|
"shelf": {
|
||||||
"path": "/datasets/shelf/skelda/test.json",
|
"path": "/datasets/shelf/skelda/test.json",
|
||||||
"take_interval": 1,
|
"take_interval": 1,
|
||||||
"min_match_score": 0.95,
|
"min_match_score": 0.92,
|
||||||
"min_group_size": 2,
|
"min_group_size": 2,
|
||||||
},
|
},
|
||||||
"ikeaasm": {
|
"ikeaasm": {
|
||||||
"path": "/datasets/ikeaasm/skelda/test.json",
|
"path": "/datasets/ikeaasm/skelda/test.json",
|
||||||
"take_interval": 2,
|
"take_interval": 2,
|
||||||
"min_match_score": 0.92,
|
"min_match_score": 0.89,
|
||||||
"min_bbox_score": 0.20,
|
"min_bbox_score": 0.20,
|
||||||
},
|
},
|
||||||
"chi3d": {
|
"chi3d": {
|
||||||
@ -107,20 +107,21 @@ datasets = {
|
|||||||
"tsinghua": {
|
"tsinghua": {
|
||||||
"path": "/datasets/tsinghua/skelda/test.json",
|
"path": "/datasets/tsinghua/skelda/test.json",
|
||||||
"take_interval": 3,
|
"take_interval": 3,
|
||||||
"min_match_score": 0.95,
|
"min_match_score": 0.92,
|
||||||
"min_group_size": 2,
|
"min_group_size": 2,
|
||||||
},
|
},
|
||||||
"human36m_wb": {
|
"human36m_wb": {
|
||||||
"path": "/datasets/human36m/skelda/wb/test.json",
|
"path": "/datasets/human36m/skelda/wb/test.json",
|
||||||
"take_interval": 100,
|
"take_interval": 100,
|
||||||
"min_bbox_score": 0.4,
|
"min_bbox_score": 0.4,
|
||||||
|
"min_match_score": 0.93,
|
||||||
"batch_poses": False,
|
"batch_poses": False,
|
||||||
},
|
},
|
||||||
"egohumans_tagging": {
|
"egohumans_tagging": {
|
||||||
"path": "/datasets/egohumans/skelda/all.json",
|
"path": "/datasets/egohumans/skelda/all.json",
|
||||||
"take_interval": 2,
|
"take_interval": 2,
|
||||||
"subset": "tagging",
|
"subset": "tagging",
|
||||||
"min_match_score": 0.92,
|
"min_match_score": 0.89,
|
||||||
"min_group_size": 2,
|
"min_group_size": 2,
|
||||||
"min_bbox_score": 0.2,
|
"min_bbox_score": 0.2,
|
||||||
"min_bbox_area": 0.05 * 0.05,
|
"min_bbox_area": 0.05 * 0.05,
|
||||||
|
|||||||
@ -19,7 +19,7 @@ whole_body = {
|
|||||||
"hands": False,
|
"hands": False,
|
||||||
}
|
}
|
||||||
config = {
|
config = {
|
||||||
"min_match_score": 0.94,
|
"min_match_score": 0.91,
|
||||||
"min_group_size": 1,
|
"min_group_size": 1,
|
||||||
"min_bbox_score": 0.3,
|
"min_bbox_score": 0.3,
|
||||||
"min_bbox_area": 0.1 * 0.1,
|
"min_bbox_area": 0.1 * 0.1,
|
||||||
|
|||||||
Reference in New Issue
Block a user