Merge branch 'imps' into 'master'

Drop triangulation pairs with double associations

See merge request Percipiote/RapidPoseTriangulation!9
This commit is contained in:
DANBER
2025-05-26 12:11:07 +00:00
4 changed files with 2844 additions and 2424 deletions

File diff suppressed because it is too large Load Diff

View File

@ -4,6 +4,7 @@
#include <iomanip>
#include <map>
#include <numeric>
#include <set>
#include <unordered_map>
#include "camera.hpp"
@ -711,8 +712,8 @@ std::vector<std::vector<std::array<float, 4>>> TriangulatorInternal::triangulate
{
const auto [i, j, k, l] = indices[e];
int pid1 = num_persons_sum[i] + k;
int pid2 = num_persons_sum[k] + l;
int pid1 = (i > 0 ? num_persons_sum[i - 1] : 0) + k;
int pid2 = (j > 0 ? num_persons_sum[j - 1] : 0) + l;
bool match = false;
if (!last_poses_3d.empty())
@ -803,8 +804,106 @@ std::vector<std::vector<std::array<float, 4>>> TriangulatorInternal::triangulate
groups = calc_grouping(all_pairs, all_scored_poses, min_match_score);
// Drop groups with too few matches
size_t num_groups = groups.size();
for (size_t i = num_groups; i > 0; --i)
size_t num_groups_1 = groups.size();
for (size_t i = num_groups_1; i > 0; --i)
{
if (std::get<2>(groups[i - 1]).size() < this->min_group_size)
{
groups.erase(groups.begin() + i - 1);
}
}
// Drop pairs with double associations, where the same 2D person appears in multiple pairs.
// If two not-same persons have relatively similar poses, the triangulation could create a
// false positive virtual person. This can lead to a single 2D skeleton being associated with
// multiple 3D skeletons. To avoid this, check if the same 2D person appears in multiple valid
// pairs. If so, drop the pairs in less populated groups or with the lower scores.
std::map<std::tuple<int, int, int>, std::vector<size_t>> pairs_map;
for (size_t i = 0; i < all_pairs.size(); ++i)
{
const auto &p = all_pairs[i];
const auto &mid1 = std::make_tuple(
std::get<0>(p.first), std::get<1>(p.first), std::get<0>(p.second));
const auto &mid2 = std::make_tuple(
std::get<0>(p.first), std::get<1>(p.first), std::get<1>(p.second));
pairs_map[mid1].push_back(i);
pairs_map[mid2].push_back(i);
}
std::vector<size_t> group_map;
group_map.resize(all_pairs.size());
for (size_t i = 0; i < groups.size(); ++i)
{
const auto &group = groups[i];
const auto &indices = std::get<2>(group);
for (const auto &idx : indices)
{
group_map[idx] = i;
}
}
std::set<size_t> drop_indices;
for (auto &pair : pairs_map)
{
auto &indices = pair.second;
if (indices.size() > 1)
{
std::vector<size_t> group_sizes;
std::vector<float> pair_scores;
for (auto &idx : indices)
{
group_sizes.push_back(std::get<2>(groups[group_map[idx]]).size());
pair_scores.push_back(all_scored_poses[idx].second);
}
// Sort indices by group size (prio-1) and pair score (prio-2)
std::vector<size_t> indices_sorted(indices.size());
std::iota(indices_sorted.begin(), indices_sorted.end(), 0);
std::sort(indices_sorted.begin(), indices_sorted.end(),
[&group_sizes, &pair_scores](size_t a, size_t b)
{
if (group_sizes[a] != group_sizes[b])
{
return group_sizes[a] > group_sizes[b];
}
return pair_scores[a] > pair_scores[b];
});
// Drop all but the first index
for (size_t j = 1; j < indices_sorted.size(); ++j)
{
size_t drop_idx = indices[indices_sorted[j]];
drop_indices.insert(drop_idx);
}
}
}
std::vector<size_t> drop_list(drop_indices.begin(), drop_indices.end());
std::sort(drop_list.begin(), drop_list.end(), std::greater<size_t>());
for (size_t i = 0; i < drop_list.size(); ++i)
{
all_scored_poses.erase(all_scored_poses.begin() + drop_list[i]);
all_pairs.erase(all_pairs.begin() + drop_list[i]);
// Remove pairs from groups and update indices of the remaining pairs
for (size_t j = 0; j < groups.size(); ++j)
{
auto &indices = std::get<2>(groups[j]);
auto it = std::find(indices.begin(), indices.end(), drop_list[i]);
if (it != indices.end())
{
indices.erase(it);
}
for (size_t k = 0; k < std::get<2>(groups[j]).size(); ++k)
{
if ((size_t)std::get<2>(groups[j])[k] > drop_list[i])
{
std::get<2>(groups[j])[k] -= 1;
}
}
}
}
// Drop groups with too few matches again
size_t num_groups_2 = groups.size();
for (size_t i = num_groups_2; i > 0; --i)
{
if (std::get<2>(groups[i - 1]).size() < this->min_group_size)
{
@ -1500,8 +1599,6 @@ std::pair<std::vector<std::array<float, 4>>, float> TriangulatorInternal::triang
}
// Drop lowest scores
size_t drop_k = static_cast<size_t>(num_joints * 0.2);
const size_t min_k = 3;
std::vector<float> valid_scores;
for (size_t i = 0; i < num_joints; ++i)
{
@ -1511,9 +1608,9 @@ std::pair<std::vector<std::array<float, 4>>, float> TriangulatorInternal::triang
}
}
size_t scores_size = valid_scores.size();
if (scores_size >= min_k)
size_t drop_k = static_cast<size_t>(scores_size * 0.2);
if (drop_k > 0)
{
drop_k = std::min(drop_k, scores_size - min_k);
std::partial_sort(valid_scores.begin(), valid_scores.begin() + drop_k, valid_scores.end());
valid_scores.erase(valid_scores.begin(), valid_scores.begin() + drop_k);
}

View File

@ -65,27 +65,29 @@ datasets = {
"path": "/datasets/panoptic/skelda/test.json",
"cams": ["00_03", "00_06", "00_12", "00_13", "00_23"],
# "cams": ["00_03", "00_06", "00_12"],
# "cams": ["00_03", "00_06", "00_12", "00_13", "00_23", "00_15", "00_10"],
# "cams": ["00_03", "00_06", "00_12", "00_13", "00_23", "00_15", "00_10", "00_21", "00_09", "00_01"],
# "cams": [],
"take_interval": 3,
"min_match_score": 0.95,
"use_scenes": ["160906_pizza1", "160422_haggling1", "160906_ian5"],
"min_group_size": 1,
# "min_group_size": 4,
# "min_group_size": 1,
# "min_group_size": 1,
# "min_group_size": 2,
# "min_group_size": 11,
"min_bbox_area": 0.05 * 0.05,
},
"mvor": {
"path": "/datasets/mvor/skelda/all.json",
"take_interval": 1,
"with_depth": False,
"min_match_score": 0.85,
"min_match_score": 0.81,
"min_bbox_score": 0.25,
},
"campus": {
"path": "/datasets/campus/skelda/test.json",
"take_interval": 1,
"min_match_score": 0.92,
"min_match_score": 0.91,
"min_bbox_score": 0.5,
},
"shelf": {
@ -97,7 +99,7 @@ datasets = {
"ikeaasm": {
"path": "/datasets/ikeaasm/skelda/test.json",
"take_interval": 2,
"min_match_score": 0.92,
"min_match_score": 0.81,
"min_bbox_score": 0.20,
},
"chi3d": {
@ -120,8 +122,8 @@ datasets = {
"path": "/datasets/egohumans/skelda/all.json",
"take_interval": 2,
"subset": "tagging",
"min_match_score": 0.92,
"min_group_size": 2,
"min_match_score": 0.89,
"min_group_size": 1,
"min_bbox_score": 0.2,
"min_bbox_area": 0.05 * 0.05,
},
@ -143,7 +145,7 @@ datasets = {
"path": "/datasets/egohumans/skelda/all.json",
"take_interval": 2,
"subset": "basketball",
"min_group_size": 7,
"min_group_size": 4,
"min_bbox_score": 0.25,
"min_bbox_area": 0.025 * 0.025,
},
@ -151,7 +153,8 @@ datasets = {
"path": "/datasets/egohumans/skelda/all.json",
"take_interval": 2,
"subset": "volleyball",
"min_group_size": 11,
"min_match_score": 0.95,
"min_group_size": 7,
"min_bbox_score": 0.25,
"min_bbox_area": 0.05 * 0.05,
},
@ -380,6 +383,19 @@ def main():
replace_head_with_nose=True,
)
if dataset_use == "shelf":
# Also run old-style evaluation for shelf dataset
odir = os.path.join(output_dir, "pcp/") if output_dir != "" else ""
_ = evals.campus_shelf.run_eval(
labels,
all_poses_3d,
all_ids,
joint_names_net=joint_names_3d,
save_error_imgs=odir,
debug_2D_preds=all_poses_2d,
)
# ==================================================================================================
if __name__ == "__main__":

2
skelda

Submodule skelda updated: deb926c6bc...40d8c6efb8