43 lines
1.0 KiB
Markdown
43 lines
1.0 KiB
Markdown
# ROS
|
|
|
|
<br>
|
|
|
|
## Build
|
|
|
|
- Install system: \
|
|
(https://developer.nvidia.com/embedded/learn/get-started-jetson-agx-orin-devkit)
|
|
|
|
- Install _docker_: \
|
|
(https://docs.docker.com/engine/install/ubuntu/#install-using-the-convenience-script)
|
|
|
|
- Install _nvidia-container-toolkit_: \
|
|
(https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
|
|
|
|
- Enable GPU-access for docker building:
|
|
|
|
Run `sudo nano /etc/docker/daemon.json` and add:
|
|
|
|
```json
|
|
{
|
|
"runtimes": {
|
|
"nvidia": {
|
|
"path": "nvidia-container-runtime",
|
|
"runtimeArgs": []
|
|
}
|
|
},
|
|
"default-runtime": "nvidia"
|
|
}
|
|
```
|
|
|
|
Restart docker: `sudo systemctl restart docker`
|
|
|
|
- Install _vs-code_: \
|
|
(https://code.visualstudio.com/docs/setup/linux)
|
|
|
|
|
|
- Test docker is working: \
|
|
```bash
|
|
sudo docker run -it --rm --net=host --runtime nvidia -e DISPLAY=$DISPLAY -v /tmp/.X11-unix/:/tmp/.X11-unix nvcr.io/nvidia/l4t-base:35.4.1
|
|
sudo docker run --runtime nvidia -it --rm --network=host nvcr.io/nvidia/l4t-pytorch:r35.1.0-pth1.11-py3
|
|
```
|