97 lines
3.8 KiB
C++
97 lines
3.8 KiB
C++
#include <filesystem>
|
|
#include <vector>
|
|
#include <string>
|
|
#include <memory>
|
|
|
|
#include <opencv2/opencv.hpp>
|
|
|
|
#include "../src/utils_2d_pose.hpp"
|
|
|
|
// =================================================================================================
|
|
// =================================================================================================
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
using namespace utils_2d_pose;
|
|
|
|
std::string base_path = "/RapidPoseTriangulation/extras/mmdeploy/exports/";
|
|
std::string model_path1 = base_path + "rtmdet-nano_1x320x320x3_fp16_extra-steps.onnx";
|
|
std::string model_path2 = base_path + "rtmpose-m_1x384x288x3_fp16_extra-steps.onnx";
|
|
|
|
std::vector<std::string> img_paths = {
|
|
"/RapidPoseTriangulation/data/h1/54138969-img_003201.jpg",
|
|
"/RapidPoseTriangulation/data/h1/55011271-img_003201.jpg",
|
|
"/RapidPoseTriangulation/data/h1/58860488-img_003201.jpg",
|
|
"/RapidPoseTriangulation/data/h1/60457274-img_003201.jpg",
|
|
};
|
|
|
|
// {
|
|
// std::cout << "\nTesting RTMDet and RTMPose" << std::endl;
|
|
// RTMDet model1(model_path1, 0.3, 0.1 * 0.1, 30);
|
|
// RTMPose model2(model_path2, 30);
|
|
// for (size_t i = 0; i < img_paths.size(); i++)
|
|
// {
|
|
// cv::Mat img = cv::imread(img_paths[i]);
|
|
// cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
|
|
|
// auto outputs1 = model1.call(img);
|
|
// std::cout << "Model1 outputs: " << outputs1[0][0] << " " << outputs1[0][1] << " "
|
|
// << outputs1[0][2] << " " << outputs1[0][3] << " " << outputs1[0][4] << " "
|
|
// << std::endl;
|
|
|
|
// for (size_t j = 0; j < outputs1.size(); j++)
|
|
// {
|
|
// std::vector<std::array<float, 5>> bboxes = {outputs1[j]};
|
|
// auto outputs2 = model2.call(img, bboxes);
|
|
// std::cout << "Model2 outputs: " << outputs2[0][0][0] << " "
|
|
// << outputs2[0][0][1] << " " << outputs2[0][0][2] << " " << std::endl;
|
|
// }
|
|
// }
|
|
// }
|
|
|
|
// {
|
|
// std::cout << "\nTesting TopDown" << std::endl;
|
|
// TopDown model3(model_path1, model_path2, 0.3, 0.1 * 0.1, false, 30);
|
|
// for (size_t i = 0; i < img_paths.size(); i++)
|
|
// {
|
|
// cv::Mat img = cv::imread(img_paths[i]);
|
|
// cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
|
|
|
// auto outputs3 = model3.predict(img);
|
|
// std::cout << "Model3 outputs: " << outputs3[0][0][0] << " "
|
|
// << outputs3[0][0][1] << " " << outputs3[0][0][2] << " " << std::endl;
|
|
// }
|
|
// }
|
|
|
|
{
|
|
std::cout << "\nTesting PosePredictor 1" << std::endl;
|
|
PosePredictor model4(false, 0.3, 0.1 * 0.1, false);
|
|
std::vector<cv::Mat> images;
|
|
for (size_t i = 0; i < img_paths.size(); i++)
|
|
{
|
|
cv::Mat img = cv::imread(img_paths[i]);
|
|
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
|
images.push_back(img);
|
|
}
|
|
auto outputs4 = model4.predict(images);
|
|
std::cout << "Model4 outputs: " << outputs4[0][0][0][0] << " "
|
|
<< outputs4[0][0][0][1] << " " << outputs4[0][0][0][2] << " " << std::endl;
|
|
}
|
|
|
|
{
|
|
std::cout << "\nTesting PosePredictor 2" << std::endl;
|
|
PosePredictor model5(false, 0.3, 0.1 * 0.1, true);
|
|
std::vector<cv::Mat> images;
|
|
for (size_t i = 0; i < img_paths.size(); i++)
|
|
{
|
|
cv::Mat img = cv::imread(img_paths[i]);
|
|
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
|
images.push_back(img);
|
|
}
|
|
auto outputs5 = model5.predict(images);
|
|
std::cout << "Model5 outputs: " << outputs5[0][0][0][0] << " "
|
|
<< outputs5[0][0][0][1] << " " << outputs5[0][0][0][2] << " " << std::endl;
|
|
}
|
|
return 0;
|
|
}
|