460 lines
15 KiB
Python
460 lines
15 KiB
Python
import json
|
|
import os
|
|
import sys
|
|
import time
|
|
|
|
import cv2
|
|
import matplotlib
|
|
import numpy as np
|
|
import tqdm
|
|
|
|
import test_triangulate
|
|
import utils_2d_pose
|
|
from skelda import evals
|
|
|
|
sys.path.append("/RapidPoseTriangulation/swig/")
|
|
import rpt
|
|
|
|
# ==================================================================================================
|
|
|
|
dataset_use = "human36m"
|
|
# dataset_use = "panoptic"
|
|
# dataset_use = "mvor"
|
|
# dataset_use = "shelf"
|
|
# dataset_use = "campus"
|
|
# dataset_use = "ikeaasm"
|
|
# dataset_use = "chi3d"
|
|
# dataset_use = "tsinghua"
|
|
# dataset_use = "human36m_wb"
|
|
# dataset_use = "egohumans_tagging"
|
|
# dataset_use = "egohumans_legoassemble"
|
|
# dataset_use = "egohumans_fencing"
|
|
# dataset_use = "egohumans_basketball"
|
|
# dataset_use = "egohumans_volleyball"
|
|
# dataset_use = "egohumans_badminton"
|
|
# dataset_use = "egohumans_tennis"
|
|
# dataset_use = "ntu"
|
|
# dataset_use = "koarob"
|
|
|
|
|
|
# Describes the minimum area as fraction of the image size for a 2D bounding box to be considered
|
|
# If the persons are small in the image, use a lower value
|
|
default_min_bbox_area = 0.1 * 0.1
|
|
|
|
# Describes how confident a 2D bounding box needs to be to be considered
|
|
# If the persons are small in the image, or poorly recognizable, use a lower value
|
|
default_min_bbox_score = 0.3
|
|
|
|
# Describes how good two 2D poses need to match each other to create a valid triangulation
|
|
# If the quality of the 2D detections is poor, use a lower value
|
|
default_min_match_score = 0.94
|
|
|
|
# Describes the minimum number of camera pairs that need to detect the same person
|
|
# If the number of cameras is high, and the views are not occluded, use a higher value
|
|
default_min_group_size = 1
|
|
|
|
# Batch poses per image for faster processing
|
|
# If most of the time only one person is in a image, disable it, because it is slightly slower then
|
|
default_batch_poses = True
|
|
|
|
datasets = {
|
|
"human36m": {
|
|
"path": "/datasets/human36m/skelda/pose_test.json",
|
|
"take_interval": 5,
|
|
"min_match_score": 0.94,
|
|
"min_group_size": 1,
|
|
"min_bbox_score": 0.4,
|
|
"min_bbox_area": 0.1 * 0.1,
|
|
"batch_poses": False,
|
|
},
|
|
"panoptic": {
|
|
"path": "/datasets/panoptic/skelda/test.json",
|
|
"cams": ["00_03", "00_06", "00_12", "00_13", "00_23"],
|
|
# "cams": ["00_03", "00_06", "00_12"],
|
|
# "cams": ["00_03", "00_06", "00_12", "00_13", "00_23", "00_15", "00_10", "00_21", "00_09", "00_01"],
|
|
"take_interval": 3,
|
|
"use_scenes": ["160906_pizza1", "160422_haggling1", "160906_ian5"],
|
|
"min_group_size": 1,
|
|
# "min_group_size": 4,
|
|
"min_bbox_area": 0.05 * 0.05,
|
|
},
|
|
"mvor": {
|
|
"path": "/datasets/mvor/skelda/all.json",
|
|
"take_interval": 1,
|
|
"with_depth": False,
|
|
"min_match_score": 0.85,
|
|
"min_bbox_score": 0.25,
|
|
},
|
|
"campus": {
|
|
"path": "/datasets/campus/skelda/test.json",
|
|
"take_interval": 1,
|
|
"min_bbox_score": 0.5,
|
|
},
|
|
"shelf": {
|
|
"path": "/datasets/shelf/skelda/test.json",
|
|
"take_interval": 1,
|
|
"min_match_score": 0.96,
|
|
"min_group_size": 2,
|
|
},
|
|
"ikeaasm": {
|
|
"path": "/datasets/ikeaasm/skelda/test.json",
|
|
"take_interval": 2,
|
|
"min_match_score": 0.92,
|
|
"min_bbox_score": 0.20,
|
|
},
|
|
"chi3d": {
|
|
"path": "/datasets/chi3d/skelda/all.json",
|
|
"take_interval": 5,
|
|
},
|
|
"tsinghua": {
|
|
"path": "/datasets/tsinghua/skelda/test.json",
|
|
"take_interval": 3,
|
|
"min_group_size": 2,
|
|
},
|
|
"human36m_wb": {
|
|
"path": "/datasets/human36m/skelda/wb/test.json",
|
|
"take_interval": 100,
|
|
"min_bbox_score": 0.4,
|
|
"batch_poses": False,
|
|
},
|
|
"egohumans_tagging": {
|
|
"path": "/datasets/egohumans/skelda/all.json",
|
|
"take_interval": 2,
|
|
"subset": "tagging",
|
|
"min_group_size": 2,
|
|
"min_bbox_score": 0.25,
|
|
"min_bbox_area": 0.05 * 0.05,
|
|
},
|
|
"egohumans_legoassemble": {
|
|
"path": "/datasets/egohumans/skelda/all.json",
|
|
"take_interval": 2,
|
|
"subset": "legoassemble",
|
|
"min_group_size": 2,
|
|
},
|
|
"egohumans_fencing": {
|
|
"path": "/datasets/egohumans/skelda/all.json",
|
|
"take_interval": 2,
|
|
"subset": "fencing",
|
|
"min_group_size": 7,
|
|
"min_bbox_score": 0.5,
|
|
"min_bbox_area": 0.05 * 0.05,
|
|
},
|
|
"egohumans_basketball": {
|
|
"path": "/datasets/egohumans/skelda/all.json",
|
|
"take_interval": 2,
|
|
"subset": "basketball",
|
|
"min_group_size": 7,
|
|
"min_bbox_score": 0.25,
|
|
"min_bbox_area": 0.025 * 0.025,
|
|
},
|
|
"egohumans_volleyball": {
|
|
"path": "/datasets/egohumans/skelda/all.json",
|
|
"take_interval": 2,
|
|
"subset": "volleyball",
|
|
"min_group_size": 11,
|
|
"min_bbox_score": 0.25,
|
|
"min_bbox_area": 0.05 * 0.05,
|
|
},
|
|
"egohumans_badminton": {
|
|
"path": "/datasets/egohumans/skelda/all.json",
|
|
"take_interval": 2,
|
|
"subset": "badminton",
|
|
"min_group_size": 7,
|
|
"min_bbox_score": 0.25,
|
|
"min_bbox_area": 0.05 * 0.05,
|
|
},
|
|
"egohumans_tennis": {
|
|
"path": "/datasets/egohumans/skelda/all.json",
|
|
"take_interval": 2,
|
|
"subset": "tennis",
|
|
"min_group_size": 11,
|
|
"min_bbox_area": 0.025 * 0.025,
|
|
},
|
|
}
|
|
|
|
joint_names_2d = test_triangulate.joint_names_2d
|
|
joint_names_3d = list(joint_names_2d)
|
|
eval_joints = [
|
|
"head",
|
|
"shoulder_left",
|
|
"shoulder_right",
|
|
"elbow_left",
|
|
"elbow_right",
|
|
"wrist_left",
|
|
"wrist_right",
|
|
"hip_left",
|
|
"hip_right",
|
|
"knee_left",
|
|
"knee_right",
|
|
"ankle_left",
|
|
"ankle_right",
|
|
]
|
|
if dataset_use == "human36m":
|
|
eval_joints[eval_joints.index("head")] = "nose"
|
|
if dataset_use == "panoptic":
|
|
eval_joints[eval_joints.index("head")] = "nose"
|
|
if dataset_use == "human36m_wb":
|
|
if any((test_triangulate.whole_body.values())):
|
|
eval_joints = list(joint_names_2d)
|
|
else:
|
|
eval_joints[eval_joints.index("head")] = "nose"
|
|
|
|
# output_dir = "/RapidPoseTriangulation/data/testoutput/"
|
|
output_dir = ""
|
|
|
|
# ==================================================================================================
|
|
|
|
|
|
def load_json(path: str):
|
|
with open(path, "r", encoding="utf-8") as file:
|
|
data = json.load(file)
|
|
return data
|
|
|
|
|
|
# ==================================================================================================
|
|
|
|
|
|
def load_labels(dataset: dict):
|
|
"""Load labels by dataset description"""
|
|
|
|
if "panoptic" in dataset:
|
|
labels = load_json(dataset["panoptic"]["path"])
|
|
labels = [lb for i, lb in enumerate(labels) if i % 1500 < 90]
|
|
|
|
# Filter by maximum number of persons
|
|
labels = [l for l in labels if len(l["bodies3D"]) <= 10]
|
|
|
|
# Filter scenes
|
|
if "use_scenes" in dataset["panoptic"]:
|
|
labels = [
|
|
l for l in labels if l["scene"] in dataset["panoptic"]["use_scenes"]
|
|
]
|
|
|
|
# Filter cameras
|
|
if not "cameras_depth" in labels[0]:
|
|
for label in labels:
|
|
for i, cam in reversed(list(enumerate(label["cameras"]))):
|
|
if cam["name"] not in dataset["panoptic"]["cams"]:
|
|
label["cameras"].pop(i)
|
|
label["imgpaths"].pop(i)
|
|
|
|
elif "human36m" in dataset:
|
|
labels = load_json(dataset["human36m"]["path"])
|
|
labels = [lb for lb in labels if lb["subject"] == "S9"]
|
|
labels = [lb for i, lb in enumerate(labels) if i % 4000 < 150]
|
|
|
|
for label in labels:
|
|
label.pop("action")
|
|
label.pop("frame")
|
|
|
|
elif "mvor" in dataset:
|
|
labels = load_json(dataset["mvor"]["path"])
|
|
|
|
# Rename keys
|
|
for label in labels:
|
|
label["cameras_color"] = label["cameras"]
|
|
label["imgpaths_color"] = label["imgpaths"]
|
|
|
|
elif "ikeaasm" in dataset:
|
|
labels = load_json(dataset["ikeaasm"]["path"])
|
|
cams0 = str(labels[0]["cameras"])
|
|
labels = [lb for lb in labels if str(lb["cameras"]) == cams0]
|
|
|
|
elif "shelf" in dataset:
|
|
labels = load_json(dataset["shelf"]["path"])
|
|
labels = [lb for lb in labels if "test" in lb["splits"]]
|
|
|
|
elif "campus" in dataset:
|
|
labels = load_json(dataset["campus"]["path"])
|
|
labels = [lb for lb in labels if "test" in lb["splits"]]
|
|
|
|
elif "tsinghua" in dataset:
|
|
labels = load_json(dataset["tsinghua"]["path"])
|
|
labels = [lb for lb in labels if "test" in lb["splits"]]
|
|
labels = [lb for lb in labels if lb["seq"] == "seq_1"]
|
|
labels = [lb for i, lb in enumerate(labels) if i % 300 < 90]
|
|
|
|
for label in labels:
|
|
label["bodyids"] = list(range(len(label["bodies3D"])))
|
|
|
|
elif "chi3d" in dataset:
|
|
labels = load_json(dataset["chi3d"]["path"])
|
|
labels = [lb for lb in labels if lb["setup"] == "s03"]
|
|
labels = [lb for i, lb in enumerate(labels) if i % 2000 < 150]
|
|
|
|
elif "human36m_wb" in dataset:
|
|
labels = load_json(dataset["human36m_wb"]["path"])
|
|
|
|
elif any(("egohumans" in key for key in dataset)):
|
|
labels = load_json(dataset[dataset_use]["path"])
|
|
labels = [lb for lb in labels if "test" in lb["splits"]]
|
|
labels = [lb for lb in labels if dataset[dataset_use]["subset"] in lb["seq"]]
|
|
if dataset[dataset_use]["subset"] in ["volleyball", "tennis"]:
|
|
labels = [lb for i, lb in enumerate(labels) if i % 150 < 60]
|
|
|
|
else:
|
|
raise ValueError("Dataset not available")
|
|
|
|
# Optionally drop samples to speed up train/eval
|
|
if "take_interval" in dataset:
|
|
take_interval = dataset["take_interval"]
|
|
if take_interval > 1:
|
|
labels = [l for i, l in enumerate(labels) if i % take_interval == 0]
|
|
|
|
return labels
|
|
|
|
|
|
# ==================================================================================================
|
|
|
|
|
|
def main():
|
|
global joint_names_3d, eval_joints
|
|
|
|
# Load dataset specific parameters
|
|
min_match_score = datasets[dataset_use].get(
|
|
"min_match_score", default_min_match_score
|
|
)
|
|
min_group_size = datasets[dataset_use].get("min_group_size", default_min_group_size)
|
|
min_bbox_score = datasets[dataset_use].get("min_bbox_score", default_min_bbox_score)
|
|
min_bbox_area = datasets[dataset_use].get("min_bbox_area", default_min_bbox_area)
|
|
batch_poses = datasets[dataset_use].get("batch_poses", default_batch_poses)
|
|
|
|
# Load 2D pose model
|
|
whole_body = test_triangulate.whole_body
|
|
if any((whole_body[k] for k in whole_body)):
|
|
kpt_model = utils_2d_pose.load_wb_model()
|
|
else:
|
|
kpt_model = utils_2d_pose.load_model(min_bbox_score, min_bbox_area, batch_poses)
|
|
|
|
# Manually set matplotlib backend
|
|
try:
|
|
matplotlib.use("TkAgg")
|
|
except ImportError:
|
|
print("WARNING: Using headless mode, no visualizations will be shown.")
|
|
|
|
print("Loading dataset ...")
|
|
labels = load_labels(
|
|
{
|
|
dataset_use: datasets[dataset_use],
|
|
"take_interval": datasets[dataset_use]["take_interval"],
|
|
}
|
|
)
|
|
|
|
# Print a dataset sample for debugging
|
|
print(labels[0])
|
|
|
|
print("\nCalculating 2D predictions ...")
|
|
all_poses_2d = []
|
|
times = []
|
|
for label in tqdm.tqdm(labels):
|
|
images_2d = []
|
|
|
|
try:
|
|
start = time.time()
|
|
for i in range(len(label["imgpaths"])):
|
|
imgpath = label["imgpaths"][i]
|
|
img = test_triangulate.load_image(imgpath)
|
|
images_2d.append(img)
|
|
time_imgs = time.time() - start
|
|
except cv2.error:
|
|
print("One of the paths not found:", label["imgpaths"])
|
|
continue
|
|
|
|
if dataset_use == "human36m":
|
|
for i in range(len(images_2d)):
|
|
# Since the images don't have the same shape, rescale some of them
|
|
img = images_2d[i]
|
|
ishape = img.shape
|
|
if ishape != (1000, 1000, 3):
|
|
cam = label["cameras"][i]
|
|
cam["K"][1][1] = cam["K"][1][1] * (1000 / ishape[0])
|
|
cam["K"][1][2] = cam["K"][1][2] * (1000 / ishape[0])
|
|
cam["K"][0][0] = cam["K"][0][0] * (1000 / ishape[1])
|
|
cam["K"][0][2] = cam["K"][0][2] * (1000 / ishape[1])
|
|
images_2d[i] = cv2.resize(img, (1000, 1000))
|
|
|
|
start = time.time()
|
|
poses_2d = utils_2d_pose.get_2d_pose(kpt_model, images_2d)
|
|
poses_2d = test_triangulate.update_keypoints(poses_2d, joint_names_2d)
|
|
time_2d = time.time() - start
|
|
|
|
all_poses_2d.append(poses_2d)
|
|
times.append([time_imgs, time_2d, 0])
|
|
|
|
print("\nCalculating 3D predictions ...")
|
|
all_poses_3d = []
|
|
all_ids = []
|
|
triangulator = rpt.Triangulator(
|
|
min_match_score=min_match_score, min_group_size=min_group_size
|
|
)
|
|
old_scene = ""
|
|
old_index = -1
|
|
for i in tqdm.tqdm(range(len(labels))):
|
|
label = labels[i]
|
|
poses_2d = all_poses_2d[i]
|
|
|
|
if old_scene != label.get("scene", "") or (
|
|
old_index + datasets[dataset_use]["take_interval"] < label["index"]
|
|
):
|
|
# Reset last poses if scene changes
|
|
old_scene = label.get("scene", "")
|
|
triangulator.reset()
|
|
|
|
start = time.time()
|
|
if sum(np.sum(p) for p in poses_2d) == 0:
|
|
poses3D = np.zeros([1, len(joint_names_3d), 4]).tolist()
|
|
else:
|
|
rpt_cameras = rpt.convert_cameras(label["cameras"])
|
|
roomparams = [label["room_size"], label["room_center"]]
|
|
poses3D = triangulator.triangulate_poses(
|
|
poses_2d, rpt_cameras, roomparams, joint_names_2d
|
|
)
|
|
time_3d = time.time() - start
|
|
|
|
old_index = label["index"]
|
|
all_poses_3d.append(np.array(poses3D).tolist())
|
|
all_ids.append(label["id"])
|
|
times[i][2] = time_3d
|
|
|
|
# Print per-step triangulation timings
|
|
print("")
|
|
triangulator.print_stats()
|
|
|
|
warmup_iters = 10
|
|
if len(times) > warmup_iters:
|
|
times = times[warmup_iters:]
|
|
avg_time_im = np.mean([t[0] for t in times])
|
|
avg_time_2d = np.mean([t[1] for t in times])
|
|
avg_time_3d = np.mean([t[2] for t in times])
|
|
tstats = {
|
|
"img_loading": avg_time_im,
|
|
"avg_time_2d": avg_time_2d,
|
|
"avg_time_3d": avg_time_3d,
|
|
"avg_fps": 1.0 / (avg_time_2d + avg_time_3d),
|
|
}
|
|
print("\nMetrics:")
|
|
print(json.dumps(tstats, indent=2))
|
|
|
|
_ = evals.mpjpe.run_eval(
|
|
labels,
|
|
all_poses_3d,
|
|
all_ids,
|
|
joint_names_net=joint_names_3d,
|
|
joint_names_use=eval_joints,
|
|
save_error_imgs=output_dir,
|
|
)
|
|
_ = evals.pcp.run_eval(
|
|
labels,
|
|
all_poses_3d,
|
|
all_ids,
|
|
joint_names_net=joint_names_3d,
|
|
joint_names_use=eval_joints,
|
|
replace_head_with_nose=True,
|
|
)
|
|
|
|
|
|
# ==================================================================================================
|
|
|
|
if __name__ == "__main__":
|
|
main()
|