Files
RapidPoseTriangulation/extras/easypose/pipeline.py
2024-11-29 14:25:57 +01:00

263 lines
13 KiB
Python

import os
import numpy as np
from easypose import model
from easypose.model import detection
from easypose.model import pose
from .download import get_url, get_model_path, download
from .consts import AvailablePoseModels, AvailableDetModels
from .common import Person, region_of_interest, restore_keypoints
def get_pose_model(pose_model_path, pose_model_decoder, device, warmup):
if pose_model_decoder == 'Dark':
pose_model = pose.Heatmap(pose_model_path, dark=True, device=device, warmup=warmup)
else:
pose_model = getattr(pose, pose_model_decoder)(pose_model_path, device=device, warmup=warmup)
return pose_model
def get_det_model(det_model_path, model_type, conf_thre, iou_thre, device, warmup):
det_model = getattr(detection, model_type)(det_model_path, conf_thre, iou_thre, device, warmup)
return det_model
class TopDown:
def __init__(self,
pose_model_name,
pose_model_decoder,
det_model_name,
conf_threshold=0.6,
iou_threshold=0.6,
device='CUDA',
warmup=30):
if pose_model_name not in AvailablePoseModels.POSE_MODELS:
raise ValueError(
'The {} human pose estimation model is not in the model repository.'.format(pose_model_name))
if pose_model_decoder not in AvailablePoseModels.POSE_MODELS[pose_model_name]:
raise ValueError(
'No {} decoding head for the {} model was found in the model repository.'.format(pose_model_decoder,
pose_model_name))
if det_model_name not in AvailableDetModels.DET_MODELS:
raise ValueError(
'The {} detection model is not in the model repository.'.format(det_model_name))
pose_model_dir = get_model_path(AvailablePoseModels.POSE_MODELS[pose_model_name][pose_model_decoder],
detection_model=False)
pose_model_path = os.path.join(pose_model_dir,
AvailablePoseModels.POSE_MODELS[pose_model_name][pose_model_decoder])
if os.path.exists(pose_model_path):
try:
self.pose_model = get_pose_model(pose_model_path, pose_model_decoder, device, warmup)
except Exception:
url = get_url(AvailablePoseModels.POSE_MODELS[pose_model_name][pose_model_decoder],
detection_model=False)
download(url, pose_model_dir)
self.pose_model = get_pose_model(pose_model_path, pose_model_decoder, device, warmup)
else:
url = get_url(AvailablePoseModels.POSE_MODELS[pose_model_name][pose_model_decoder],
detection_model=False)
download(url, pose_model_dir)
self.pose_model = get_pose_model(pose_model_path, pose_model_decoder, device, warmup)
det_model_dir = get_model_path(AvailableDetModels.DET_MODELS[det_model_name]['file_name'],
detection_model=True)
det_model_path = os.path.join(det_model_dir,
AvailableDetModels.DET_MODELS[det_model_name]['file_name'])
det_model_type = AvailableDetModels.DET_MODELS[det_model_name]['model_type']
if os.path.exists(det_model_path):
try:
self.det_model = get_det_model(det_model_path,
det_model_type,
conf_threshold,
iou_threshold,
device,
warmup)
except Exception:
url = get_url(AvailableDetModels.DET_MODELS[det_model_name]['file_name'],
detection_model=True)
download(url, det_model_dir)
self.det_model = get_det_model(det_model_path,
det_model_type,
conf_threshold,
iou_threshold,
device,
warmup)
else:
url = get_url(AvailableDetModels.DET_MODELS[det_model_name]['file_name'],
detection_model=True)
download(url, det_model_dir)
self.det_model = get_det_model(det_model_path,
det_model_type,
conf_threshold,
iou_threshold,
device,
warmup)
def predict(self, image):
boxes = self.det_model(image)
results = []
for i in range(boxes.shape[0]):
p = Person()
p.box = boxes[i]
region = region_of_interest(image, p.box)
kp = self.pose_model(region)
p.keypoints = restore_keypoints(p.box, kp)
results.append(p)
return results
class Pose:
def __init__(self,
pose_model_name,
pose_model_decoder,
device='CUDA',
warmup=30):
if pose_model_name not in AvailablePoseModels.POSE_MODELS:
raise ValueError(
'The {} human pose estimation model is not in the model repository.'.format(pose_model_name))
if pose_model_decoder not in AvailablePoseModels.POSE_MODELS[pose_model_name]:
raise ValueError(
'No {} decoding head for the {} model was found in the model repository.'.format(pose_model_decoder,
pose_model_name))
pose_model_dir = get_model_path(AvailablePoseModels.POSE_MODELS[pose_model_name][pose_model_decoder],
detection_model=False)
pose_model_path = os.path.join(pose_model_dir,
AvailablePoseModels.POSE_MODELS[pose_model_name][pose_model_decoder])
if os.path.exists(pose_model_path):
try:
self.pose_model = get_pose_model(pose_model_path, pose_model_decoder, device, warmup)
except Exception:
url = get_url(AvailablePoseModels.POSE_MODELS[pose_model_name][pose_model_decoder],
detection_model=False)
download(url, pose_model_dir)
self.pose_model = get_pose_model(pose_model_path, pose_model_decoder, device, warmup)
else:
url = get_url(AvailablePoseModels.POSE_MODELS[pose_model_name][pose_model_decoder],
detection_model=False)
download(url, pose_model_dir)
self.pose_model = get_pose_model(pose_model_path, pose_model_decoder, device, warmup)
def predict(self, image):
p = Person()
box = np.array([0, 0, image.shape[3], image.shape[2], 1, 0])
p.box = box
p.keypoints = self.pose_model(image)
return p
class CustomTopDown:
def __init__(self,
pose_model,
det_model,
pose_decoder=None,
device='CUDA',
iou_threshold=0.6,
conf_threshold=0.6,
warmup=30):
if isinstance(pose_model, model.BaseModel):
self.pose_model = pose_model
elif isinstance(pose_model, str):
if pose_model not in AvailablePoseModels.POSE_MODELS:
raise ValueError(
'The {} human pose estimation model is not in the model repository.'.format(pose_model))
if pose_model not in AvailablePoseModels.POSE_MODELS[pose_model]:
raise ValueError(
'No {} decoding head for the {} model was found in the model repository.'.format(pose_decoder,
pose_model))
pose_model_dir = get_model_path(AvailablePoseModels.POSE_MODELS[pose_model][pose_decoder],
detection_model=False)
pose_model_path = os.path.join(pose_model_dir,
AvailablePoseModels.POSE_MODELS[pose_model][pose_decoder])
if os.path.exists(pose_model_path):
try:
self.pose_model = get_pose_model(pose_model_path, pose_decoder, device, warmup)
except Exception:
url = get_url(AvailablePoseModels.POSE_MODELS[pose_model][pose_decoder],
detection_model=False)
download(url, pose_model_dir)
self.pose_model = get_pose_model(pose_model_path, pose_decoder, device, warmup)
else:
url = get_url(AvailablePoseModels.POSE_MODELS[pose_model][pose_decoder],
detection_model=False)
download(url, pose_model_dir)
self.pose_model = get_pose_model(pose_model_path, pose_decoder, device, warmup)
else:
raise TypeError("Invalid type for pose model, Please write a custom model based on 'BaseModel'.")
if isinstance(det_model, model.BaseModel):
self.det_model = det_model
elif isinstance(det_model, str):
if det_model not in AvailableDetModels.DET_MODELS:
raise ValueError(
'The {} detection model is not in the model repository.'.format(det_model))
det_model_dir = get_model_path(AvailableDetModels.DET_MODELS[det_model]['file_name'],
detection_model=True)
det_model_path = os.path.join(det_model_dir,
AvailableDetModels.DET_MODELS[det_model]['file_name'])
det_model_type = AvailableDetModels.DET_MODELS[det_model]['model_type']
if os.path.exists(det_model_path):
try:
self.det_model = get_det_model(det_model_path,
det_model_type,
conf_threshold,
iou_threshold,
device,
warmup)
except Exception:
url = get_url(AvailableDetModels.DET_MODELS[det_model]['file_name'],
detection_model=True)
download(url, det_model_dir)
self.det_model = get_det_model(det_model_path,
det_model_type,
conf_threshold,
iou_threshold,
device,
warmup)
else:
url = get_url(AvailableDetModels.DET_MODELS[det_model]['file_name'],
detection_model=True)
download(url, det_model_dir)
self.det_model = get_det_model(det_model_path,
det_model_type,
conf_threshold,
iou_threshold,
device,
warmup)
else:
raise TypeError("Invalid type for detection model, Please write a custom model based on 'BaseModel'.")
def predict(self, image):
boxes = self.det_model(image)
results = []
for i in range(boxes.shape[0]):
p = Person()
p.box = boxes[i]
region = region_of_interest(image, p.box)
kp = self.pose_model(region)
p.keypoints = restore_keypoints(p.box, kp)
results.append(p)
return results
class CustomSinglePose:
def __init__(self, pose_model):
if isinstance(pose_model, model.BaseModel):
self.pose_model = pose_model
else:
raise TypeError("Invalid type for pose model, Please write a custom model based on 'BaseModel'.")
def predict(self, image):
p = Person()
box = np.array([0, 0, image.shape[3], image.shape[2], 1, 0])
p.box = box
p.keypoints = self.pose_model(image)
return p