forked from HQU-gxy/CVTH3PE
Compare commits
11 Commits
gxy/202506
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
| 6cd13064f3 | |||
| 5d816d92d5 | |||
| 4bc3fce0b1 | |||
| 1f8d70803f | |||
| 20b2cf59f2 | |||
| 4a5cfde245 | |||
| d2c1c8d624 | |||
| c31cc4e7bf | |||
| 46b8518a10 | |||
| 4e78165f12 | |||
| c78850855c |
@ -1,14 +1,19 @@
|
||||
import weakref
|
||||
from collections import deque
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
from datetime import datetime, timedelta
|
||||
from itertools import chain
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
Generator,
|
||||
Optional,
|
||||
Protocol,
|
||||
Sequence,
|
||||
TypeAlias,
|
||||
TypedDict,
|
||||
TypeVar,
|
||||
Union,
|
||||
cast,
|
||||
overload,
|
||||
)
|
||||
@ -18,18 +23,428 @@ from beartype import beartype
|
||||
from beartype.typing import Mapping, Sequence
|
||||
from jax import Array
|
||||
from jaxtyping import Array, Float, Int, jaxtyped
|
||||
from pyrsistent import PVector
|
||||
from pyrsistent import PVector, v, PRecord, PMap
|
||||
|
||||
from app.camera import Detection
|
||||
from app.camera import Detection, CameraID
|
||||
|
||||
TrackingID: TypeAlias = int
|
||||
|
||||
|
||||
class TrackingPrediction(TypedDict):
|
||||
velocity: Optional[Float[Array, "J 3"]]
|
||||
keypoints: Float[Array, "J 3"]
|
||||
|
||||
|
||||
class GenericVelocityFilter(Protocol):
|
||||
"""
|
||||
a filter interface for tracking velocity estimation
|
||||
"""
|
||||
|
||||
def predict(self, timestamp: datetime) -> TrackingPrediction:
|
||||
"""
|
||||
predict the velocity and the keypoints location
|
||||
|
||||
Args:
|
||||
timestamp: timestamp of the prediction
|
||||
|
||||
Returns:
|
||||
velocity: velocity of the tracking
|
||||
keypoints: keypoints of the tracking
|
||||
"""
|
||||
... # pylint: disable=unnecessary-ellipsis
|
||||
|
||||
def update(self, keypoints: Float[Array, "J 3"], timestamp: datetime) -> None:
|
||||
"""
|
||||
update the filter state with new measurements
|
||||
|
||||
Args:
|
||||
keypoints: new measurements
|
||||
timestamp: timestamp of the update
|
||||
"""
|
||||
... # pylint: disable=unnecessary-ellipsis
|
||||
|
||||
def get(self) -> TrackingPrediction:
|
||||
"""
|
||||
get the current state of the filter state
|
||||
|
||||
Returns:
|
||||
velocity: velocity of the tracking
|
||||
keypoints: keypoints of the tracking
|
||||
"""
|
||||
... # pylint: disable=unnecessary-ellipsis
|
||||
|
||||
|
||||
class DummyVelocityFilter(GenericVelocityFilter):
|
||||
"""
|
||||
a dummy velocity filter that does nothing
|
||||
"""
|
||||
|
||||
_keypoints_shape: tuple[int, ...]
|
||||
|
||||
def __init__(self, keypoints: Float[Array, "J 3"]):
|
||||
self._keypoints_shape = keypoints.shape
|
||||
|
||||
def predict(self, timestamp: datetime) -> TrackingPrediction:
|
||||
return TrackingPrediction(
|
||||
velocity=None,
|
||||
keypoints=jnp.zeros(self._keypoints_shape),
|
||||
)
|
||||
|
||||
def update(self, keypoints: Float[Array, "J 3"], timestamp: datetime) -> None: ...
|
||||
|
||||
def get(self) -> TrackingPrediction:
|
||||
return TrackingPrediction(
|
||||
velocity=None,
|
||||
keypoints=jnp.zeros(self._keypoints_shape),
|
||||
)
|
||||
|
||||
|
||||
class LastDifferenceVelocityFilter(GenericVelocityFilter):
|
||||
"""
|
||||
a naive velocity filter that uses the last difference of keypoints
|
||||
"""
|
||||
|
||||
_last_timestamp: datetime
|
||||
_last_keypoints: Float[Array, "J 3"]
|
||||
_last_velocity: Optional[Float[Array, "J 3"]] = None
|
||||
|
||||
def __init__(self, keypoints: Float[Array, "J 3"], timestamp: datetime):
|
||||
self._last_keypoints = keypoints
|
||||
self._last_timestamp = timestamp
|
||||
|
||||
def predict(self, timestamp: datetime) -> TrackingPrediction:
|
||||
delta_t_s = (timestamp - self._last_timestamp).total_seconds()
|
||||
assert delta_t_s >= 0, f"delta_t_s is negative: {delta_t_s}"
|
||||
if self._last_velocity is None:
|
||||
return TrackingPrediction(
|
||||
velocity=None,
|
||||
keypoints=self._last_keypoints,
|
||||
)
|
||||
else:
|
||||
return TrackingPrediction(
|
||||
velocity=self._last_velocity,
|
||||
keypoints=self._last_keypoints + self._last_velocity * delta_t_s,
|
||||
)
|
||||
|
||||
def update(self, keypoints: Float[Array, "J 3"], timestamp: datetime) -> None:
|
||||
delta_t_s = (timestamp - self._last_timestamp).total_seconds()
|
||||
assert delta_t_s >= 0, f"delta_t_s is negative: {delta_t_s}"
|
||||
self._last_velocity = (keypoints - self._last_keypoints) / delta_t_s
|
||||
self._last_keypoints = keypoints
|
||||
self._last_timestamp = timestamp
|
||||
|
||||
def get(self) -> TrackingPrediction:
|
||||
if self._last_velocity is None:
|
||||
return TrackingPrediction(
|
||||
velocity=None,
|
||||
keypoints=self._last_keypoints,
|
||||
)
|
||||
else:
|
||||
return TrackingPrediction(
|
||||
velocity=self._last_velocity,
|
||||
keypoints=self._last_keypoints,
|
||||
)
|
||||
|
||||
|
||||
class LeastMeanSquareVelocityFilter(GenericVelocityFilter):
|
||||
"""
|
||||
a velocity filter that uses the least mean square method to estimate the velocity
|
||||
"""
|
||||
|
||||
_historical_3d_poses: deque[Float[Array, "J 3"]]
|
||||
_historical_timestamps: deque[datetime]
|
||||
_velocity: Optional[Float[Array, "J 3"]] = None
|
||||
_max_samples: int
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
historical_3d_poses: Sequence[Float[Array, "J 3"]],
|
||||
historical_timestamps: Sequence[datetime],
|
||||
max_samples: int = 10,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
historical_3d_poses: sequence of 3D poses, at least one element is required
|
||||
historical_timestamps: sequence of timestamps, whose length is the same as `historical_3d_poses`
|
||||
max_samples: maximum number of samples to keep
|
||||
"""
|
||||
assert (N := len(historical_3d_poses)) == len(
|
||||
historical_timestamps
|
||||
), f"the length of `historical_3d_poses` and `historical_timestamps` must be the same; got {N} and {len(historical_timestamps)}"
|
||||
if N < 1:
|
||||
raise ValueError("at least one historical 3D pose is required")
|
||||
|
||||
temp = zip(historical_3d_poses, historical_timestamps)
|
||||
# sorted by timestamp
|
||||
temp_sorted = sorted(temp, key=lambda x: x[1])
|
||||
self._historical_3d_poses = deque(
|
||||
map(lambda x: x[0], temp_sorted), maxlen=max_samples
|
||||
)
|
||||
self._historical_timestamps = deque(
|
||||
map(lambda x: x[1], temp_sorted), maxlen=max_samples
|
||||
)
|
||||
self._max_samples = max_samples
|
||||
if len(self._historical_3d_poses) < 2:
|
||||
self._velocity = None
|
||||
else:
|
||||
self._update(
|
||||
jnp.array(self._historical_3d_poses),
|
||||
jnp.array(self._historical_timestamps),
|
||||
)
|
||||
|
||||
def predict(self, timestamp: datetime) -> TrackingPrediction:
|
||||
if not self._historical_3d_poses:
|
||||
raise ValueError("No historical 3D poses available for prediction")
|
||||
|
||||
# use the latest historical detection
|
||||
latest_3d_pose = self._historical_3d_poses[-1]
|
||||
latest_timestamp = self._historical_timestamps[-1]
|
||||
|
||||
delta_t_s = (timestamp - latest_timestamp).total_seconds()
|
||||
assert delta_t_s >= 0, f"delta_t_s is negative: {delta_t_s}"
|
||||
|
||||
if self._velocity is None:
|
||||
return TrackingPrediction(
|
||||
velocity=None,
|
||||
keypoints=latest_3d_pose,
|
||||
)
|
||||
else:
|
||||
# Linear motion model: ẋt = xt' + Vt' · (t - t')
|
||||
predicted_3d_pose = latest_3d_pose + self._velocity * delta_t_s
|
||||
return TrackingPrediction(
|
||||
velocity=self._velocity, keypoints=predicted_3d_pose
|
||||
)
|
||||
|
||||
@jaxtyped(typechecker=beartype)
|
||||
def _update(
|
||||
self,
|
||||
keypoints: Float[Array, "N J 3"],
|
||||
timestamps: Float[Array, "N"],
|
||||
) -> None:
|
||||
"""
|
||||
update measurements with least mean square method
|
||||
"""
|
||||
if keypoints.shape[0] < 2:
|
||||
raise ValueError("Not enough measurements to estimate velocity")
|
||||
|
||||
# Using least squares to fit a linear model for each joint and dimension
|
||||
# X = timestamps, y = keypoints
|
||||
# For each joint and each dimension, we solve for velocity
|
||||
|
||||
n_samples = timestamps.shape[0]
|
||||
n_joints = keypoints.shape[1]
|
||||
|
||||
# Create design matrix for linear regression
|
||||
# [t, 1] for each timestamp
|
||||
X = jnp.column_stack([timestamps, jnp.ones(n_samples)])
|
||||
|
||||
# Reshape keypoints to solve for all joints and dimensions at once
|
||||
# From [N, J, 3] to [N, J*3]
|
||||
keypoints_reshaped = keypoints.reshape(n_samples, -1)
|
||||
|
||||
# Use JAX's lstsq to solve the least squares problem
|
||||
coefficients, _, _, _ = jnp.linalg.lstsq(X, keypoints_reshaped, rcond=None)
|
||||
|
||||
# Coefficients shape is [2, J*3]
|
||||
# First row: velocities, Second row: intercepts
|
||||
velocities = coefficients[0].reshape(n_joints, 3)
|
||||
|
||||
# Update velocity
|
||||
self._velocity = velocities
|
||||
|
||||
def update(self, keypoints: Float[Array, "J 3"], timestamp: datetime) -> None:
|
||||
last_timestamp = self._historical_timestamps[-1]
|
||||
assert last_timestamp <= timestamp
|
||||
|
||||
# deque would manage the maxlen automatically
|
||||
self._historical_3d_poses.append(keypoints)
|
||||
self._historical_timestamps.append(timestamp)
|
||||
|
||||
t_0 = self._historical_timestamps[0]
|
||||
all_keypoints = jnp.array(self._historical_3d_poses)
|
||||
|
||||
def timestamp_to_seconds(timestamp: datetime) -> float:
|
||||
assert t_0 <= timestamp
|
||||
return (timestamp - t_0).total_seconds()
|
||||
|
||||
# timestamps relative to t_0 (the oldest detection timestamp)
|
||||
all_timestamps = jnp.array(
|
||||
map(timestamp_to_seconds, self._historical_timestamps)
|
||||
)
|
||||
|
||||
self._update(all_keypoints, all_timestamps)
|
||||
|
||||
def get(self) -> TrackingPrediction:
|
||||
if not self._historical_3d_poses:
|
||||
raise ValueError("No historical 3D poses available")
|
||||
|
||||
latest_3d_pose = self._historical_3d_poses[-1]
|
||||
|
||||
if self._velocity is None:
|
||||
return TrackingPrediction(velocity=None, keypoints=latest_3d_pose)
|
||||
else:
|
||||
return TrackingPrediction(velocity=self._velocity, keypoints=latest_3d_pose)
|
||||
|
||||
|
||||
class OneEuroFilter(GenericVelocityFilter):
|
||||
"""
|
||||
Implementation of the 1€ filter (One Euro Filter) for smoothing keypoint data.
|
||||
|
||||
The 1€ filter is an adaptive low-pass filter that adjusts its cutoff frequency
|
||||
based on movement speed to reduce jitter during slow movements while maintaining
|
||||
responsiveness during fast movements.
|
||||
|
||||
Reference: https://cristal.univ-lille.fr/~casiez/1euro/
|
||||
"""
|
||||
|
||||
_x_filtered: Float[Array, "J 3"]
|
||||
_dx_filtered: Optional[Float[Array, "J 3"]] = None
|
||||
_last_timestamp: datetime
|
||||
_min_cutoff: float
|
||||
_beta: float
|
||||
_d_cutoff: float
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
keypoints: Float[Array, "J 3"],
|
||||
timestamp: datetime,
|
||||
min_cutoff: float = 1.0,
|
||||
beta: float = 0.0,
|
||||
d_cutoff: float = 1.0,
|
||||
):
|
||||
"""
|
||||
Initialize the One Euro Filter.
|
||||
|
||||
Args:
|
||||
keypoints: Initial keypoints positions
|
||||
timestamp: Initial timestamp
|
||||
min_cutoff: Minimum cutoff frequency (lower = more smoothing)
|
||||
beta: Speed coefficient (higher = less lag during fast movements)
|
||||
d_cutoff: Cutoff frequency for the derivative filter
|
||||
"""
|
||||
self._last_timestamp = timestamp
|
||||
|
||||
# Filter parameters
|
||||
self._min_cutoff = min_cutoff
|
||||
self._beta = beta
|
||||
self._d_cutoff = d_cutoff
|
||||
|
||||
# Filter state
|
||||
self._x_filtered = keypoints # Position filter state
|
||||
self._dx_filtered = None # Initially no velocity estimate
|
||||
|
||||
@overload
|
||||
def _smoothing_factor(self, cutoff: float, dt: float) -> float: ...
|
||||
|
||||
@overload
|
||||
def _smoothing_factor(
|
||||
self, cutoff: Float[Array, "J"], dt: float
|
||||
) -> Float[Array, "J"]: ...
|
||||
|
||||
@jaxtyped(typechecker=beartype)
|
||||
def _smoothing_factor(
|
||||
self, cutoff: Union[float, Float[Array, "J"]], dt: float
|
||||
) -> Union[float, Float[Array, "J"]]:
|
||||
"""Calculate the smoothing factor for the low-pass filter."""
|
||||
r = 2 * jnp.pi * cutoff * dt
|
||||
return r / (r + 1)
|
||||
|
||||
@jaxtyped(typechecker=beartype)
|
||||
def _exponential_smoothing(
|
||||
self,
|
||||
a: Union[float, Float[Array, "J"]],
|
||||
x: Float[Array, "J 3"],
|
||||
x_prev: Float[Array, "J 3"],
|
||||
) -> Float[Array, "J 3"]:
|
||||
"""Apply exponential smoothing to the input."""
|
||||
return a * x + (1 - a) * x_prev
|
||||
|
||||
def predict(self, timestamp: datetime) -> TrackingPrediction:
|
||||
"""
|
||||
Predict keypoints position at a given timestamp.
|
||||
|
||||
Args:
|
||||
timestamp: Timestamp for prediction
|
||||
|
||||
Returns:
|
||||
TrackingPrediction with velocity and keypoints
|
||||
"""
|
||||
dt = (timestamp - self._last_timestamp).total_seconds()
|
||||
|
||||
if self._dx_filtered is None:
|
||||
return TrackingPrediction(
|
||||
velocity=None,
|
||||
keypoints=self._x_filtered,
|
||||
)
|
||||
else:
|
||||
predicted_keypoints = self._x_filtered + self._dx_filtered * dt
|
||||
return TrackingPrediction(
|
||||
velocity=self._dx_filtered,
|
||||
keypoints=predicted_keypoints,
|
||||
)
|
||||
|
||||
def update(self, keypoints: Float[Array, "J 3"], timestamp: datetime) -> None:
|
||||
"""
|
||||
Update the filter with new measurements.
|
||||
|
||||
Args:
|
||||
keypoints: New keypoint measurements
|
||||
timestamp: Timestamp of the measurements
|
||||
"""
|
||||
dt = (timestamp - self._last_timestamp).total_seconds()
|
||||
if dt <= 0:
|
||||
raise ValueError(
|
||||
f"new timestamp is not greater than the last timestamp; expecting: {timestamp} > {self._last_timestamp}"
|
||||
)
|
||||
|
||||
dx = (keypoints - self._x_filtered) / dt
|
||||
|
||||
# Determine cutoff frequency based on movement speed
|
||||
cutoff = self._min_cutoff + self._beta * jnp.linalg.norm(
|
||||
dx, axis=-1, keepdims=True
|
||||
)
|
||||
|
||||
# Apply low-pass filter to velocity
|
||||
a_d = self._smoothing_factor(self._d_cutoff, dt)
|
||||
self._dx_filtered = self._exponential_smoothing(
|
||||
a_d,
|
||||
dx,
|
||||
(
|
||||
jnp.zeros_like(keypoints)
|
||||
if self._dx_filtered is None
|
||||
else self._dx_filtered
|
||||
),
|
||||
)
|
||||
|
||||
# Apply low-pass filter to position with adaptive cutoff
|
||||
a_cutoff = self._smoothing_factor(jnp.asarray(cutoff), dt)
|
||||
self._x_filtered = self._exponential_smoothing(
|
||||
a_cutoff, keypoints, self._x_filtered
|
||||
)
|
||||
|
||||
# Update timestamp
|
||||
self._last_timestamp = timestamp
|
||||
|
||||
def get(self) -> TrackingPrediction:
|
||||
"""
|
||||
Get the current state of the filter.
|
||||
|
||||
Returns:
|
||||
TrackingPrediction with velocity and keypoints
|
||||
"""
|
||||
return TrackingPrediction(
|
||||
velocity=self._dx_filtered,
|
||||
keypoints=self._x_filtered,
|
||||
)
|
||||
|
||||
|
||||
@jaxtyped(typechecker=beartype)
|
||||
@dataclass(frozen=True)
|
||||
class Tracking:
|
||||
id: int
|
||||
class TrackingState:
|
||||
"""
|
||||
The tracking id
|
||||
immutable state of a tracking
|
||||
"""
|
||||
|
||||
keypoints: Float[Array, "J 3"]
|
||||
"""
|
||||
The 3D keypoints of the tracking
|
||||
@ -41,50 +456,97 @@ class Tracking:
|
||||
The last active timestamp of the tracking
|
||||
"""
|
||||
|
||||
historical_detections: PVector[Detection]
|
||||
historical_detections_by_camera: PMap[CameraID, Detection]
|
||||
"""
|
||||
Historical detections of the tracking.
|
||||
|
||||
Used for 3D re-triangulation
|
||||
"""
|
||||
|
||||
velocity: Optional[Float[Array, "3"]] = None
|
||||
"""
|
||||
Could be `None`. Like when the 3D pose is initialized.
|
||||
|
||||
`velocity` should be updated when target association yields a new
|
||||
3D pose.
|
||||
"""
|
||||
class Tracking:
|
||||
id: TrackingID
|
||||
state: TrackingState
|
||||
velocity_filter: GenericVelocityFilter
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
id: TrackingID,
|
||||
state: TrackingState,
|
||||
velocity_filter: Optional[GenericVelocityFilter] = None,
|
||||
):
|
||||
self.id = id
|
||||
self.state = state
|
||||
self.velocity_filter = velocity_filter or DummyVelocityFilter(state.keypoints)
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"Tracking({self.id}, {self.last_active_timestamp})"
|
||||
return f"Tracking({self.id}, {self.state.last_active_timestamp})"
|
||||
|
||||
@overload
|
||||
def predict(self, time: float) -> Float[Array, "J 3"]:
|
||||
"""
|
||||
predict the keypoints at a given time
|
||||
|
||||
Args:
|
||||
time: the time in seconds to predict the keypoints
|
||||
|
||||
Returns:
|
||||
the predicted keypoints
|
||||
"""
|
||||
... # pylint: disable=unnecessary-ellipsis
|
||||
|
||||
@overload
|
||||
def predict(self, time: timedelta) -> Float[Array, "J 3"]:
|
||||
"""
|
||||
predict the keypoints at a given time
|
||||
|
||||
Args:
|
||||
time: the time delta to predict the keypoints
|
||||
"""
|
||||
... # pylint: disable=unnecessary-ellipsis
|
||||
|
||||
@overload
|
||||
def predict(self, time: datetime) -> Float[Array, "J 3"]:
|
||||
"""
|
||||
predict the keypoints at a given time
|
||||
|
||||
Args:
|
||||
time: the timestamp to predict the keypoints
|
||||
"""
|
||||
... # pylint: disable=unnecessary-ellipsis
|
||||
|
||||
def predict(
|
||||
self,
|
||||
delta_t_s: float,
|
||||
time: float | timedelta | datetime,
|
||||
) -> Float[Array, "J 3"]:
|
||||
"""
|
||||
Predict the 3D pose of a tracking based on its velocity.
|
||||
JAX-friendly implementation that avoids Python control flow.
|
||||
|
||||
Args:
|
||||
delta_t_s: Time delta in seconds
|
||||
|
||||
Returns:
|
||||
Predicted 3D pose keypoints
|
||||
"""
|
||||
# ------------------------------------------------------------------
|
||||
# Step 1 – decide velocity on the Python side
|
||||
# ------------------------------------------------------------------
|
||||
if self.velocity is None:
|
||||
velocity = jnp.zeros_like(self.keypoints) # (J, 3)
|
||||
if isinstance(time, timedelta):
|
||||
timestamp = self.state.last_active_timestamp + time
|
||||
elif isinstance(time, datetime):
|
||||
timestamp = time
|
||||
else:
|
||||
velocity = self.velocity # (J, 3)
|
||||
timestamp = self.state.last_active_timestamp + timedelta(seconds=time)
|
||||
# pylint: disable-next=unsubscriptable-object
|
||||
return self.velocity_filter.predict(timestamp)["keypoints"]
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
# Step 2 – pure JAX math
|
||||
# ------------------------------------------------------------------
|
||||
return self.keypoints + velocity * delta_t_s
|
||||
def update(self, new_3d_pose: Float[Array, "J 3"], timestamp: datetime) -> None:
|
||||
"""
|
||||
update the tracking with a new 3D pose
|
||||
|
||||
Note:
|
||||
equivalent to call `velocity_filter.update(new_3d_pose, timestamp)`
|
||||
"""
|
||||
self.velocity_filter.update(new_3d_pose, timestamp)
|
||||
|
||||
@property
|
||||
def velocity(self) -> Float[Array, "J 3"]:
|
||||
"""
|
||||
The velocity of the tracking for each keypoint
|
||||
"""
|
||||
# pylint: disable-next=unsubscriptable-object
|
||||
if (vel := self.velocity_filter.get()["velocity"]) is None:
|
||||
return jnp.zeros_like(self.state.keypoints)
|
||||
else:
|
||||
return vel
|
||||
|
||||
|
||||
@jaxtyped(typechecker=beartype)
|
||||
@ -100,7 +562,7 @@ class AffinityResult:
|
||||
indices_T: Int[Array, "T"] # pylint: disable=invalid-name
|
||||
indices_D: Int[Array, "D"] # pylint: disable=invalid-name
|
||||
|
||||
def tracking_detections(
|
||||
def tracking_association(
|
||||
self,
|
||||
) -> Generator[tuple[float, Tracking, Detection], None, None]:
|
||||
"""
|
||||
|
||||
301
playground.py
301
playground.py
@ -31,13 +31,13 @@ from typing import (
|
||||
TypeVar,
|
||||
cast,
|
||||
overload,
|
||||
Iterable,
|
||||
)
|
||||
|
||||
import awkward as ak
|
||||
import jax
|
||||
import jax.numpy as jnp
|
||||
import numpy as np
|
||||
import orjson
|
||||
from beartype import beartype
|
||||
from beartype.typing import Mapping, Sequence
|
||||
from cv2 import undistortPoints
|
||||
@ -46,9 +46,10 @@ from jaxtyping import Array, Float, Num, jaxtyped
|
||||
from matplotlib import pyplot as plt
|
||||
from numpy.typing import ArrayLike
|
||||
from optax.assignment import hungarian_algorithm as linear_sum_assignment
|
||||
from pyrsistent import v, pvector
|
||||
from pyrsistent import pvector, v, m, pmap, PMap, freeze, thaw
|
||||
from scipy.spatial.transform import Rotation as R
|
||||
from typing_extensions import deprecated
|
||||
from collections import defaultdict
|
||||
|
||||
from app.camera import (
|
||||
Camera,
|
||||
@ -59,15 +60,22 @@ from app.camera import (
|
||||
classify_by_camera,
|
||||
)
|
||||
from app.solver._old import GLPKSolver
|
||||
from app.tracking import AffinityResult, Tracking
|
||||
from app.tracking import (
|
||||
TrackingID,
|
||||
AffinityResult,
|
||||
LastDifferenceVelocityFilter,
|
||||
LeastMeanSquareVelocityFilter,
|
||||
Tracking,
|
||||
TrackingState,
|
||||
)
|
||||
from app.visualize.whole_body import visualize_whole_body
|
||||
|
||||
NDArray: TypeAlias = np.ndarray
|
||||
|
||||
# %%
|
||||
DATASET_PATH = Path("samples") / "04_02"
|
||||
AK_CAMERA_DATASET: ak.Array = ak.from_parquet(DATASET_PATH / "camera_params.parquet")
|
||||
DELTA_T_MIN = timedelta(milliseconds=10)
|
||||
AK_CAMERA_DATASET: ak.Array = ak.from_parquet(DATASET_PATH / "camera_params.parquet") # type: ignore
|
||||
DELTA_T_MIN = timedelta(milliseconds=1)
|
||||
display(AK_CAMERA_DATASET)
|
||||
|
||||
|
||||
@ -431,12 +439,12 @@ def triangulate_one_point_from_multiple_views_linear(
|
||||
) -> Float[Array, "3"]:
|
||||
"""
|
||||
Args:
|
||||
proj_matrices: 形状为(N, 3, 4)的投影矩阵序列
|
||||
points: 形状为(N, 2)的点坐标序列
|
||||
confidences: 形状为(N,)的置信度序列,范围[0.0, 1.0]
|
||||
proj_matrices: (N, 3, 4) projection matrices
|
||||
points: (N, 2) image-coordinates per view
|
||||
confidences: (N,) optional per-view confidences in [0,1]
|
||||
|
||||
Returns:
|
||||
point_3d: 形状为(3,)的三角测量得到的3D点
|
||||
(3,) 3D point
|
||||
"""
|
||||
assert len(proj_matrices) == len(points)
|
||||
|
||||
@ -462,7 +470,7 @@ def triangulate_one_point_from_multiple_views_linear(
|
||||
|
||||
# replace the Python `if` with a jnp.where
|
||||
point_3d_homo = jnp.where(
|
||||
point_3d_homo[3] < 0, # predicate (scalar bool tracer)
|
||||
point_3d_homo[3] <= 0, # predicate (scalar bool tracer)
|
||||
-point_3d_homo, # if True
|
||||
point_3d_homo, # if False
|
||||
)
|
||||
@ -486,14 +494,14 @@ def triangulate_points_from_multiple_views_linear(
|
||||
confidences: (N, P, 1) optional per-view confidences in [0,1]
|
||||
|
||||
Returns:
|
||||
(P, 3) 3D point for each of the P tracks
|
||||
(P, 3) 3D point for each of the P
|
||||
"""
|
||||
N, P, _ = points.shape
|
||||
assert proj_matrices.shape[0] == N
|
||||
if confidences is None:
|
||||
conf = jnp.ones((N, P), dtype=jnp.float32)
|
||||
else:
|
||||
conf = jnp.sqrt(jnp.clip(confidences, 0.0, 1.0))
|
||||
conf = confidences
|
||||
|
||||
# vectorize your one-point routine over P
|
||||
vmap_triangulate = jax.vmap(
|
||||
@ -504,6 +512,142 @@ def triangulate_points_from_multiple_views_linear(
|
||||
return vmap_triangulate(proj_matrices, points, conf)
|
||||
|
||||
|
||||
# %%
|
||||
@jaxtyped(typechecker=beartype)
|
||||
def triangulate_one_point_from_multiple_views_linear_time_weighted(
|
||||
proj_matrices: Float[Array, "N 3 4"],
|
||||
points: Num[Array, "N 2"],
|
||||
delta_t: Num[Array, "N"],
|
||||
lambda_t: float = 10.0,
|
||||
confidences: Optional[Float[Array, "N"]] = None,
|
||||
) -> Float[Array, "3"]:
|
||||
"""
|
||||
Triangulate one point from multiple views with time-weighted linear least squares.
|
||||
|
||||
Implements the incremental reconstruction method from "Cross-View Tracking for Multi-Human 3D Pose"
|
||||
with weighting formula: w_i = exp(-λ_t(t-t_i)) / ||c^i^T||_2
|
||||
|
||||
Args:
|
||||
proj_matrices: Shape (N, 3, 4) projection matrices sequence
|
||||
points: Shape (N, 2) point coordinates sequence
|
||||
delta_t: Time differences between current time and each observation (in seconds)
|
||||
lambda_t: Time penalty rate (higher values decrease influence of older observations)
|
||||
confidences: Shape (N,) confidence values in range [0.0, 1.0]
|
||||
|
||||
Returns:
|
||||
point_3d: Shape (3,) triangulated 3D point
|
||||
"""
|
||||
assert len(proj_matrices) == len(points)
|
||||
assert len(delta_t) == len(points)
|
||||
|
||||
N = len(proj_matrices)
|
||||
|
||||
# Prepare confidence weights
|
||||
confi: Float[Array, "N"]
|
||||
if confidences is None:
|
||||
confi = jnp.ones(N, dtype=np.float32)
|
||||
else:
|
||||
confi = jnp.sqrt(jnp.clip(confidences, 0, 1))
|
||||
|
||||
A = jnp.zeros((N * 2, 4), dtype=np.float32)
|
||||
|
||||
# First build the coefficient matrix without weights
|
||||
for i in range(N):
|
||||
x, y = points[i]
|
||||
A = A.at[2 * i].set(proj_matrices[i, 2] * x - proj_matrices[i, 0])
|
||||
A = A.at[2 * i + 1].set(proj_matrices[i, 2] * y - proj_matrices[i, 1])
|
||||
|
||||
# Then apply the time-based and confidence weights
|
||||
for i in range(N):
|
||||
# Calculate time-decay weight: e^(-λ_t * Δt)
|
||||
time_weight = jnp.exp(-lambda_t * delta_t[i])
|
||||
|
||||
# Calculate normalization factor: ||c^i^T||_2
|
||||
row_norm_1 = jnp.linalg.norm(A[2 * i])
|
||||
row_norm_2 = jnp.linalg.norm(A[2 * i + 1])
|
||||
|
||||
# Apply combined weight: time_weight / row_norm * confidence
|
||||
w1 = (time_weight / row_norm_1) * confi[i]
|
||||
w2 = (time_weight / row_norm_2) * confi[i]
|
||||
|
||||
A = A.at[2 * i].mul(w1)
|
||||
A = A.at[2 * i + 1].mul(w2)
|
||||
|
||||
# Solve using SVD
|
||||
_, _, vh = jnp.linalg.svd(A, full_matrices=False)
|
||||
point_3d_homo = vh[-1] # shape (4,)
|
||||
|
||||
# Ensure homogeneous coordinate is positive
|
||||
point_3d_homo = jnp.where(
|
||||
point_3d_homo[3] <= 0,
|
||||
-point_3d_homo,
|
||||
point_3d_homo,
|
||||
)
|
||||
|
||||
# Convert from homogeneous to Euclidean coordinates
|
||||
point_3d = point_3d_homo[:3] / point_3d_homo[3]
|
||||
return point_3d
|
||||
|
||||
|
||||
@jaxtyped(typechecker=beartype)
|
||||
def triangulate_points_from_multiple_views_linear_time_weighted(
|
||||
proj_matrices: Float[Array, "N 3 4"],
|
||||
points: Num[Array, "N P 2"],
|
||||
delta_t: Num[Array, "N"],
|
||||
lambda_t: float = 10.0,
|
||||
confidences: Optional[Float[Array, "N P"]] = None,
|
||||
) -> Float[Array, "P 3"]:
|
||||
"""
|
||||
Vectorized version that triangulates P points from N camera views with time-weighting.
|
||||
|
||||
This function uses JAX's vmap to efficiently triangulate multiple points in parallel.
|
||||
|
||||
Args:
|
||||
proj_matrices: Shape (N, 3, 4) projection matrices for N cameras
|
||||
points: Shape (N, P, 2) 2D points for P keypoints across N cameras
|
||||
delta_t: Shape (N,) time differences between current time and each camera's timestamp (seconds)
|
||||
lambda_t: Time penalty rate (higher values decrease influence of older observations)
|
||||
confidences: Shape (N, P) confidence values for each point in each camera
|
||||
|
||||
Returns:
|
||||
points_3d: Shape (P, 3) triangulated 3D points
|
||||
"""
|
||||
N, P, _ = points.shape
|
||||
assert (
|
||||
proj_matrices.shape[0] == N
|
||||
), "Number of projection matrices must match number of cameras"
|
||||
assert delta_t.shape[0] == N, "Number of time deltas must match number of cameras"
|
||||
|
||||
if confidences is None:
|
||||
# Create uniform confidences if none provided
|
||||
conf = jnp.ones((N, P), dtype=jnp.float32)
|
||||
else:
|
||||
conf = confidences
|
||||
|
||||
# Define the vmapped version of the single-point function
|
||||
# We map over the second dimension (P points) of the input arrays
|
||||
vmap_triangulate = jax.vmap(
|
||||
triangulate_one_point_from_multiple_views_linear_time_weighted,
|
||||
in_axes=(
|
||||
None,
|
||||
1,
|
||||
None,
|
||||
None,
|
||||
1,
|
||||
), # proj_matrices and delta_t static, map over points
|
||||
out_axes=0, # Output has first dimension corresponding to points
|
||||
)
|
||||
|
||||
# For each point p, extract the 2D coordinates from all cameras and triangulate
|
||||
return vmap_triangulate(
|
||||
proj_matrices, # (N, 3, 4) - static across points
|
||||
points, # (N, P, 2) - map over dim 1 (P)
|
||||
delta_t, # (N,) - static across points
|
||||
lambda_t, # scalar - static
|
||||
conf, # (N, P) - map over dim 1 (P)
|
||||
)
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
|
||||
@ -524,6 +668,23 @@ def triangle_from_cluster(
|
||||
|
||||
|
||||
# %%
|
||||
def group_by_cluster_by_camera(
|
||||
cluster: Sequence[Detection],
|
||||
) -> PMap[CameraID, Detection]:
|
||||
"""
|
||||
group the detections by camera, and preserve the latest detection for each camera
|
||||
"""
|
||||
r: dict[CameraID, Detection] = {}
|
||||
for el in cluster:
|
||||
if el.camera.id in r:
|
||||
eld = r[el.camera.id]
|
||||
preserved = max([eld, el], key=lambda x: x.timestamp)
|
||||
r[el.camera.id] = preserved
|
||||
else:
|
||||
r[el.camera.id] = el
|
||||
return pmap(r)
|
||||
|
||||
|
||||
class GlobalTrackingState:
|
||||
_last_id: int
|
||||
_trackings: dict[int, Tracking]
|
||||
@ -542,13 +703,25 @@ class GlobalTrackingState:
|
||||
return shallow_copy(self._trackings)
|
||||
|
||||
def add_tracking(self, cluster: Sequence[Detection]) -> Tracking:
|
||||
if len(cluster) < 2:
|
||||
raise ValueError(
|
||||
"cluster must contain at least 2 detections to form a tracking"
|
||||
)
|
||||
kps_3d, latest_timestamp = triangle_from_cluster(cluster)
|
||||
next_id = self._last_id + 1
|
||||
tracking = Tracking(
|
||||
id=next_id,
|
||||
tracking_state = TrackingState(
|
||||
keypoints=kps_3d,
|
||||
last_active_timestamp=latest_timestamp,
|
||||
historical_detections=v(*cluster),
|
||||
historical_detections_by_camera=group_by_cluster_by_camera(cluster),
|
||||
)
|
||||
tracking = Tracking(
|
||||
id=next_id,
|
||||
state=tracking_state,
|
||||
# velocity_filter=LastDifferenceVelocityFilter(kps_3d, latest_timestamp),
|
||||
velocity_filter=LeastMeanSquareVelocityFilter(
|
||||
historical_3d_poses=[kps_3d],
|
||||
historical_timestamps=[latest_timestamp],
|
||||
),
|
||||
)
|
||||
self._trackings[next_id] = tracking
|
||||
self._last_id = next_id
|
||||
@ -671,11 +844,7 @@ def perpendicular_distance_camera_2d_points_to_tracking_raycasting(
|
||||
Array of perpendicular distances for each keypoint
|
||||
"""
|
||||
camera = detection.camera
|
||||
# Use the delta_t supplied by the caller, but clamp to DELTA_T_MIN to
|
||||
# avoid division-by-zero / exploding affinities.
|
||||
delta_t = max(delta_t, DELTA_T_MIN)
|
||||
delta_t_s = delta_t.total_seconds()
|
||||
predicted_pose = tracking.predict(delta_t_s)
|
||||
predicted_pose = tracking.predict(delta_t)
|
||||
|
||||
# Back-project the 2D points to 3D space
|
||||
# intersection with z=0 plane
|
||||
@ -755,12 +924,12 @@ def calculate_tracking_detection_affinity(
|
||||
Combined affinity score
|
||||
"""
|
||||
camera = detection.camera
|
||||
delta_t_raw = detection.timestamp - tracking.last_active_timestamp
|
||||
delta_t_raw = detection.timestamp - tracking.state.last_active_timestamp
|
||||
# Clamp delta_t to avoid division-by-zero / exploding affinity.
|
||||
delta_t = max(delta_t_raw, DELTA_T_MIN)
|
||||
|
||||
# Calculate 2D affinity
|
||||
tracking_2d_projection = camera.project(tracking.keypoints)
|
||||
tracking_2d_projection = camera.project(tracking.state.keypoints)
|
||||
w, h = camera.params.image_size
|
||||
distance_2d = calculate_distance_2d(
|
||||
tracking_2d_projection,
|
||||
@ -840,7 +1009,7 @@ def calculate_camera_affinity_matrix_jax(
|
||||
|
||||
# === Tracking-side tensors ===
|
||||
kps3d_trk: Float[Array, "T J 3"] = jnp.stack(
|
||||
[trk.keypoints for trk in trackings]
|
||||
[trk.state.keypoints for trk in trackings]
|
||||
) # (T, J, 3)
|
||||
J = kps3d_trk.shape[1]
|
||||
# === Detection-side tensors ===
|
||||
@ -857,12 +1026,12 @@ def calculate_camera_affinity_matrix_jax(
|
||||
# --- timestamps ----------
|
||||
t0 = min(
|
||||
chain(
|
||||
(trk.last_active_timestamp for trk in trackings),
|
||||
(trk.state.last_active_timestamp for trk in trackings),
|
||||
(det.timestamp for det in camera_detections),
|
||||
)
|
||||
).timestamp() # common origin (float)
|
||||
ts_trk = jnp.array(
|
||||
[trk.last_active_timestamp.timestamp() - t0 for trk in trackings],
|
||||
[trk.state.last_active_timestamp.timestamp() - t0 for trk in trackings],
|
||||
dtype=jnp.float32, # now small, ms-scale fits in fp32
|
||||
)
|
||||
ts_det = jnp.array(
|
||||
@ -1033,8 +1202,82 @@ display(affinities)
|
||||
|
||||
|
||||
# %%
|
||||
def update_tracking(tracking: Tracking, detection: Detection):
|
||||
delta_t_ = detection.timestamp - tracking.last_active_timestamp
|
||||
delta_t = max(delta_t_, DELTA_T_MIN)
|
||||
def affinity_result_by_tracking(
|
||||
results: Iterable[AffinityResult],
|
||||
min_affinity: float = 0.0,
|
||||
) -> dict[TrackingID, list[Detection]]:
|
||||
"""
|
||||
Group affinity results by target ID.
|
||||
|
||||
return tracking
|
||||
Args:
|
||||
results: the affinity results to group
|
||||
min_affinity: the minimum affinity to consider
|
||||
Returns:
|
||||
a dictionary mapping tracking IDs to a list of detections
|
||||
"""
|
||||
res: dict[TrackingID, list[Detection]] = defaultdict(list)
|
||||
for affinity_result in results:
|
||||
for affinity, t, d in affinity_result.tracking_association():
|
||||
if affinity < min_affinity:
|
||||
continue
|
||||
res[t.id].append(d)
|
||||
return res
|
||||
|
||||
|
||||
def update_tracking(
|
||||
tracking: Tracking,
|
||||
detections: Sequence[Detection],
|
||||
max_delta_t: timedelta = timedelta(milliseconds=100),
|
||||
lambda_t: float = 10.0,
|
||||
) -> None:
|
||||
"""
|
||||
update the tracking with a new set of detections
|
||||
|
||||
Args:
|
||||
tracking: the tracking to update
|
||||
detections: the detections to update the tracking with
|
||||
max_delta_t: the maximum time difference between the last active timestamp and the latest detection
|
||||
lambda_t: the lambda value for the time difference
|
||||
|
||||
Note:
|
||||
the function would mutate the tracking object
|
||||
"""
|
||||
last_active_timestamp = tracking.state.last_active_timestamp
|
||||
latest_timestamp = max(d.timestamp for d in detections)
|
||||
d = thaw(tracking.state.historical_detections_by_camera)
|
||||
for detection in detections:
|
||||
d[detection.camera.id] = detection
|
||||
for camera_id, detection in d.items():
|
||||
if detection.timestamp - latest_timestamp > max_delta_t:
|
||||
del d[camera_id]
|
||||
new_detections = freeze(d)
|
||||
new_detections_list = list(new_detections.values())
|
||||
project_matrices = jnp.stack(
|
||||
[detection.camera.params.projection_matrix for detection in new_detections_list]
|
||||
)
|
||||
delta_t = jnp.array(
|
||||
[
|
||||
detection.timestamp.timestamp() - last_active_timestamp.timestamp()
|
||||
for detection in new_detections_list
|
||||
]
|
||||
)
|
||||
kps = jnp.stack([detection.keypoints for detection in new_detections_list])
|
||||
conf = jnp.stack([detection.confidences for detection in new_detections_list])
|
||||
kps_3d = triangulate_points_from_multiple_views_linear_time_weighted(
|
||||
project_matrices, kps, delta_t, lambda_t, conf
|
||||
)
|
||||
new_state = TrackingState(
|
||||
keypoints=kps_3d,
|
||||
last_active_timestamp=latest_timestamp,
|
||||
historical_detections_by_camera=new_detections,
|
||||
)
|
||||
tracking.update(kps_3d, latest_timestamp)
|
||||
tracking.state = new_state
|
||||
|
||||
|
||||
# %%
|
||||
affinity_results_by_tracking = affinity_result_by_tracking(affinities.values())
|
||||
for tracking_id, detections in affinity_results_by_tracking.items():
|
||||
update_tracking(global_tracking_state.trackings[tracking_id], detections)
|
||||
|
||||
# %%
|
||||
|
||||
Reference in New Issue
Block a user