1
0
forked from HQU-gxy/CVTH3PE

11 Commits

Author SHA1 Message Date
6cd13064f3 fix: various
- Added the `LeastMeanSquareVelocityFilter` to improve tracking velocity estimation using historical 3D poses.
- Updated the `triangulate_one_point_from_multiple_views_linear` and `triangulate_points_from_multiple_views_linear` functions to enhance documentation and ensure proper handling of input parameters.
- Refined the logic in triangulation functions to ensure correct handling of homogeneous coordinates.
- Improved error handling in the `LastDifferenceVelocityFilter` to assert non-negative time deltas, enhancing robustness.
2025-06-18 10:35:23 +08:00
5d816d92d5 feat: Add general rules configuration for cursor behavior
- Introduced a new `general.mdc` file containing default rules for cursor behavior, specifying guidelines for interaction and response.
- Established a structured format for rules, including a description and application conditions, to enhance user experience and clarity in cursor functionality.
2025-05-09 14:27:26 +08:00
4bc3fce0b1 feat: Add minimum affinity filter to affinity result grouping
- Introduced a `min_affinity` parameter to the `affinity_result_by_tracking` function, allowing users to specify a threshold for filtering affinity results.
- Updated the logic to skip results with affinities below the specified minimum, enhancing the relevance of grouped detections.
- Improved function documentation to include details about the new parameter and its purpose.
2025-05-03 17:29:50 +08:00
1f8d70803f feat: Implement time-weighted triangulation for enhanced 3D point reconstruction
- Added two new functions: `triangulate_one_point_from_multiple_views_linear_time_weighted` and `triangulate_points_from_multiple_views_linear_time_weighted` to perform triangulation with time-based weighting, improving accuracy in 3D point estimation.
- Introduced a method to group detections by camera while preserving the latest detection, enhancing tracking state management.
- Updated the `update_tracking` function to incorporate time-weighted triangulation, allowing for more robust updates to tracking states based on new detections.
- Refactored the `TrackingState` to utilize a mapping of historical detections by camera, improving data organization and access.
2025-05-03 17:17:47 +08:00
20b2cf59f2 refactor: Enhance OneEuroFilter with type hints and error handling improvements
- Added overloads for the `_smoothing_factor` method to improve type hinting for different input types.
- Enhanced error handling in the timestamp validation to provide clearer feedback when an invalid timestamp is encountered.
- Streamlined the calculation of the filtered velocity by simplifying the logic in the `update` method.
- Improved code organization with additional type annotations for better clarity and maintainability.
2025-05-03 15:12:06 +08:00
4a5cfde245 feat: Add OneEuroFilter for adaptive keypoint smoothing
- Introduced the `OneEuroFilter` class to implement an adaptive low-pass filter for smoothing keypoint data, enhancing tracking stability during varying movement speeds.
- Implemented methods for initialization, prediction, and updating of keypoints, allowing for dynamic adjustment of smoothing based on movement.
- Added detailed documentation and type hints to clarify the filter's functionality and parameters.
- Improved the handling of timestamps and filtering logic to ensure accurate predictions and updates.
2025-05-03 14:58:51 +08:00
d2c1c8d624 refactor: Revamp LeastMeanSquareVelocityFilter to utilize historical 3D poses
- Replaced the historical detections mechanism with deques for managing historical 3D poses and timestamps, enhancing performance and memory efficiency.
- Updated the constructor to accept historical data directly, ensuring proper initialization and sorting of poses and timestamps.
- Refined the `predict` and `update` methods to work with the new data structure, improving clarity and functionality.
- Enhanced error handling to ensure robustness when no historical data is available for predictions.
2025-05-03 14:31:59 +08:00
c31cc4e7bf refactor: Enhance tracking state management and velocity filter integration
- Introduced `TrackingState` to encapsulate the state of tracking, improving data organization and immutability.
- Updated the `Tracking` class to utilize `TrackingState`, enhancing clarity in state management.
- Refactored methods to access keypoints and timestamps through the new state structure, ensuring consistency across the codebase.
- Added a `DummyVelocityFilter` for cases where no velocity estimation is needed, improving flexibility in tracking implementations.
- Cleaned up imports and improved type hints for better code organization.
2025-05-02 12:44:58 +08:00
46b8518a10 refactor: Clean up and enhance LeastMeanSquareVelocityFilter implementation
- Removed unused `reset` methods from `GenericVelocityFilter` and `LastDifferenceVelocityFilter` classes to streamline the code.
- Added a static method `from_tracking` to `LeastMeanSquareVelocityFilter` for creating instances from a `Tracking` object.
- Implemented robust error handling in the `predict` and `get` methods to ensure proper functioning with historical detections.
- Enhanced the `update` method to utilize least squares for velocity estimation, improving accuracy in tracking predictions.
- Updated class documentation to reflect changes and clarify method purposes.
2025-05-02 12:06:05 +08:00
4e78165f12 feat: Add LeastMeanSquareVelocityFilter for advanced tracking velocity estimation
- Introduced a new `LeastMeanSquareVelocityFilter` class to enhance tracking velocity estimation using historical detections.
- Implemented methods for updating measurements and predicting future states, laying the groundwork for advanced tracking capabilities.
- Improved import organization and added necessary dependencies for the new filter functionality.
- Updated class documentation to reflect the new filter's purpose and methods.
2025-05-02 11:39:01 +08:00
c78850855c feat: Introduce LastDifferenceVelocityFilter for improved tracking velocity estimation
- Added a new `LastDifferenceVelocityFilter` class to estimate tracking velocities based on the last observed keypoints, enhancing the tracking capabilities.
- Updated the `Tracking` class to utilize the new velocity filter, allowing for more accurate predictions of keypoints over time.
- Refactored the `predict` method to support various input types (float, timedelta, datetime) for better flexibility in time handling.
- Improved timestamp handling in the `perpendicular_distance_camera_2d_points_to_tracking_raycasting` function to ensure adherence to minimum delta time constraints.
- Cleaned up imports and type hints for better organization and clarity across the codebase.
2025-05-02 11:11:32 +08:00
20 changed files with 1579 additions and 12131 deletions

2
.gitignore vendored
View File

@ -10,5 +10,3 @@ wheels/
.venv
.hypothesis
samples
*.jpg
*.parquet

View File

@ -1,7 +1,6 @@
from collections import OrderedDict, defaultdict
from dataclasses import dataclass
from datetime import datetime
import string
from typing import Any, TypeAlias, TypedDict, Optional, Sequence
from beartype import beartype
@ -523,14 +522,10 @@ def to_homogeneous(points: Num[Array, "N 2"] | Num[Array, "N 3"]) -> Num[Array,
raise ValueError(f"Invalid shape for points: {points.shape}")
import awkward as ak
@jaxtyped(typechecker=beartype)
def point_line_distance(
points: Num[Array, "N 3"] | Num[Array, "N 2"],
line: Num[Array, "N 3"],
description: str,
eps: float = 1e-9,
):
"""
@ -549,12 +544,6 @@ def point_line_distance(
"""
numerator = abs(line[:, 0] * points[:, 0] + line[:, 1] * points[:, 1] + line[:, 2])
denominator = jnp.sqrt(line[:, 0] * line[:, 0] + line[:, 1] * line[:, 1])
# line_data = {"a": line[:, 0], "b": line[:, 1], "c": line[:, 2]}
# line_x_y = {"x": points[:, 0], "y": points[:, 1]}
# ak.to_parquet(
# line_data, f"/home/admin/Code/CVTH3PE/line_a_b_c_{description}.parquet"
# )
# ak.to_parquet(line_x_y, f"/home/admin/Code/CVTH3PE/line_x_y_{description}.parquet")
return numerator / (denominator + eps)
@ -582,7 +571,7 @@ def left_to_right_epipolar_distance(
"""
F_t = fundamental_matrix.transpose()
line1_in_2 = jnp.matmul(left, F_t)
return point_line_distance(right, line1_in_2, "left_to_right")
return point_line_distance(right, line1_in_2)
@jaxtyped(typechecker=beartype)
@ -608,7 +597,7 @@ def right_to_left_epipolar_distance(
$$x^{\\prime T}Fx = 0$$
"""
line2_in_1 = jnp.matmul(right, fundamental_matrix)
return point_line_distance(left, line2_in_1, "right_to_left")
return point_line_distance(left, line2_in_1)
def distance_between_epipolar_lines(

View File

@ -1,4 +1,3 @@
import warnings
import weakref
from collections import deque
from dataclasses import dataclass
@ -115,23 +114,13 @@ class LastDifferenceVelocityFilter(GenericVelocityFilter):
def predict(self, timestamp: datetime) -> TrackingPrediction:
delta_t_s = (timestamp - self._last_timestamp).total_seconds()
if delta_t_s <= 0:
warnings.warn(
"delta_t={}; last={}; current={}".format(
delta_t_s, self._last_timestamp, timestamp
)
)
assert delta_t_s >= 0, f"delta_t_s is negative: {delta_t_s}"
if self._last_velocity is None:
return TrackingPrediction(
velocity=None,
keypoints=self._last_keypoints,
)
else:
if delta_t_s <= 0:
return TrackingPrediction(
velocity=self._last_velocity,
keypoints=self._last_keypoints,
)
return TrackingPrediction(
velocity=self._last_velocity,
keypoints=self._last_keypoints + self._last_velocity * delta_t_s,
@ -139,12 +128,10 @@ class LastDifferenceVelocityFilter(GenericVelocityFilter):
def update(self, keypoints: Float[Array, "J 3"], timestamp: datetime) -> None:
delta_t_s = (timestamp - self._last_timestamp).total_seconds()
if delta_t_s <= 0:
pass
else:
self._last_timestamp = timestamp
assert delta_t_s >= 0, f"delta_t_s is negative: {delta_t_s}"
self._last_velocity = (keypoints - self._last_keypoints) / delta_t_s
self._last_keypoints = keypoints
self._last_timestamp = timestamp
def get(self) -> TrackingPrediction:
if self._last_velocity is None:
@ -175,8 +162,20 @@ class LeastMeanSquareVelocityFilter(GenericVelocityFilter):
historical_timestamps: Sequence[datetime],
max_samples: int = 10,
):
assert len(historical_3d_poses) == len(historical_timestamps)
"""
Args:
historical_3d_poses: sequence of 3D poses, at least one element is required
historical_timestamps: sequence of timestamps, whose length is the same as `historical_3d_poses`
max_samples: maximum number of samples to keep
"""
assert (N := len(historical_3d_poses)) == len(
historical_timestamps
), f"the length of `historical_3d_poses` and `historical_timestamps` must be the same; got {N} and {len(historical_timestamps)}"
if N < 1:
raise ValueError("at least one historical 3D pose is required")
temp = zip(historical_3d_poses, historical_timestamps)
# sorted by timestamp
temp_sorted = sorted(temp, key=lambda x: x[1])
self._historical_3d_poses = deque(
map(lambda x: x[0], temp_sorted), maxlen=max_samples
@ -202,6 +201,7 @@ class LeastMeanSquareVelocityFilter(GenericVelocityFilter):
latest_timestamp = self._historical_timestamps[-1]
delta_t_s = (timestamp - latest_timestamp).total_seconds()
assert delta_t_s >= 0, f"delta_t_s is negative: {delta_t_s}"
if self._velocity is None:
return TrackingPrediction(
@ -243,7 +243,6 @@ class LeastMeanSquareVelocityFilter(GenericVelocityFilter):
keypoints_reshaped = keypoints.reshape(n_samples, -1)
# Use JAX's lstsq to solve the least squares problem
# This is more numerically stable than manually computing pseudoinverse
coefficients, _, _, _ = jnp.linalg.lstsq(X, keypoints_reshaped, rcond=None)
# Coefficients shape is [2, J*3]
@ -560,8 +559,8 @@ class AffinityResult:
matrix: Float[Array, "T D"]
trackings: Sequence[Tracking]
detections: Sequence[Detection]
indices_T: Int[Array, "A"] # pylint: disable=invalid-name
indices_D: Int[Array, "A"] # pylint: disable=invalid-name
indices_T: Int[Array, "T"] # pylint: disable=invalid-name
indices_D: Int[Array, "D"] # pylint: disable=invalid-name
def tracking_association(
self,

File diff suppressed because one or more lines are too long

View File

@ -1,208 +0,0 @@
from narwhals import Boolean
import numpy as np
import cv2
from typing import (
TypeAlias,
TypedDict,
)
from jaxtyping import Array, Num
from shapely.geometry import Polygon
from sympy import false, true
NDArray: TypeAlias = np.ndarray
# 盒子各个面的三维三角形集合
box_triangles_list = [
["4", "6", "7"],
["4", "5", "6"],
["2", "5", "6"],
["1", "2", "5"],
["1", "2", "3"],
["0", "1", "3"],
["0", "3", "7"],
["0", "4", "7"],
["2", "6", "7"],
["2", "3", "7"],
["0", "4", "5"],
["0", "1", "5"],
]
class Camera_Params(TypedDict):
rvec: Num[NDArray, "3"]
tvec: Num[NDArray, "3"]
camera_matrix: Num[Array, "3 3"]
dist: Num[Array, "N"]
width: int
height: int
class KeypointDataset(TypedDict):
frame_index: int
boxes: Num[NDArray, "N 4"]
kps: Num[NDArray, "N J 2"]
kps_scores: Num[NDArray, "N J"]
# 三维坐标系根据相机内外参计算该镜头下的二维重投影坐标
def reprojet_3d_to_2d(point_3d, camera_param):
point_2d, _ = cv2.projectPoints(
objectPoints=point_3d,
rvec=np.array(camera_param.params.Rt[:3, :3]),
tvec=np.array(camera_param.params.Rt[:3, 3]),
cameraMatrix=np.array(camera_param.params.K),
distCoeffs=np.array(camera_param.params.dist_coeffs),
)
point_2d = point_2d.reshape(-1).astype(int)
return point_2d
# 计算盒子三维坐标系
def calculaterCubeVersices(position, dimensions):
[cx, cy, cz] = position
[width, height, depth] = dimensions
halfWidth = width / 2
halfHeight = height / 2
halfDepth = depth / 2
return [
[cx - halfWidth, cy - halfHeight, cz - halfDepth],
[cx + halfWidth, cy - halfHeight, cz - halfDepth],
[cx + halfWidth, cy + halfHeight, cz - halfDepth],
[cx - halfWidth, cy + halfHeight, cz - halfDepth],
[cx - halfWidth, cy - halfHeight, cz + halfDepth],
[cx + halfWidth, cy - halfHeight, cz + halfDepth],
[cx + halfWidth, cy + halfHeight, cz + halfDepth],
[cx - halfWidth, cy + halfHeight, cz + halfDepth],
]
# 获得盒子三维坐标系
def calculater_box_3d_points():
# 盒子原点位置,相对于六面体中心偏移
box_ori_potision = [0.205 + 0.2, 0.205 + 0.50, -0.205 - 0.45]
# 盒子边长1.5米1.5米深度1.8米
box_geometry = [0.65, 1.8, 1]
filter_box_points_3d = calculaterCubeVersices(box_ori_potision, box_geometry)
filter_box_points_3d = {
str(index): element for index, element in enumerate(filter_box_points_3d)
}
return filter_box_points_3d
# 计算盒子坐标系的二维重投影数据
def calculater_box_2d_points(filter_box_points_3d, camera_param):
box_points_2d = dict()
for element_index, elment_point_3d in enumerate(filter_box_points_3d.values()):
box_points_2d[str(element_index)] = reprojet_3d_to_2d(
np.array(elment_point_3d), camera_param
).tolist()
return box_points_2d
# 盒子总的二维平面各三角形坐标点
def calculater_box_common_scope(box_points_2d):
box_triangles_all_points = []
# 遍历三角形个数
for i in range(len(box_triangles_list)):
# 获取单个三角形二维平面坐标点
single_triangles = []
for element_key in box_triangles_list[i]:
single_triangles.append(box_points_2d[element_key])
box_triangles_all_points.append(single_triangles)
return box_triangles_all_points
def calculate_triangle_union(triangles):
"""
计算多个三角形的并集区域
参数:
triangles: 包含多个三角形的列表,每个三角形由三个点的坐标组成
返回:
union_area: 并集区域的面积
union_polygon: 表示并集区域的多边形对象
"""
# 创建多边形对象列表
polygons = [Polygon(tri) for tri in triangles]
# 计算并集
union_polygon = polygons[0]
for polygon in polygons[1:]:
union_polygon = union_polygon.union(polygon)
# 计算并集面积
union_area = union_polygon.area
return union_area, union_polygon
# 射线法判断坐标点是否在box二维重投影的区域内
def point_in_polygon(p, polygon):
x, y = p
n = len(polygon)
intersections = 0
on_boundary = False
for i in range(n):
xi, yi = polygon[i]
xj, yj = polygon[(i + 1) % n] # 闭合多边形
# 检查点是否在顶点上
if (x == xi and y == yi) or (x == xj and y == yj):
on_boundary = True
break
# 检查点是否在线段上(非顶点情况)
if (min(xi, xj) <= x <= max(xi, xj)) and (min(yi, yj) <= y <= max(yi, yj)):
cross = (x - xi) * (yj - yi) - (y - yi) * (xj - xi)
if cross == 0:
on_boundary = True
break
# 计算射线与边的交点(非水平边)
if (yi > y) != (yj > y):
slope = (xj - xi) / (yj - yi) if (yj - yi) != 0 else float("inf")
x_intersect = xi + (y - yi) * slope
if x <= x_intersect:
intersections += 1
if on_boundary:
return false
return intersections % 2 == 1 # 奇数为内部返回True
# 获取并集区域坐标点
def get_contours(union_polygon):
if union_polygon.geom_type == "Polygon":
# 单一多边形
x, y = union_polygon.exterior.xy
contours = [(list(x)[i], list(y)[i]) for i in range(len(x))]
contours = np.array(contours, np.int32)
return contours
# 筛选落在盒子二维重投影区域内的关键点信息
def filter_kps_in_contours(kps, contours) -> Boolean:
# 4 5 16 17
keypoint_index: list[list[int]] = [[4, 5], [16, 17]]
centers = []
for element_keypoint in keypoint_index:
x1, y1 = kps[element_keypoint[0]]
x2, y2 = kps[element_keypoint[1]]
centers.append([(x1 + x2) / 2, (y1 + y2) / 2])
if point_in_polygon(centers[0], contours) and point_in_polygon(
centers[1], contours
):
return true
else:
return false

View File

@ -1,282 +0,0 @@
[
{
"kps": [
419.0,
154.0
],
"kps_scores": 1.0,
"index": 0
},
{
"kps": [
419.0521240234375,
154.07498168945312
],
"kps_scores": 1.0,
"index": 1
},
{
"kps": [
418.5992736816406,
154.3507080078125
],
"kps_scores": 1.0,
"index": 2
},
{
"kps": [
417.0777893066406,
154.17327880859375
],
"kps_scores": 1.0,
"index": 3
},
{
"kps": [
416.8981628417969,
154.15330505371094
],
"kps_scores": 1.0,
"index": 4
},
{
"kps": [
415.1317443847656,
153.68324279785156
],
"kps_scores": 1.0,
"index": 5
},
{
"kps": [
413.2596130371094,
153.39761352539062
],
"kps_scores": 1.0,
"index": 6
},
{
"kps": [
412.7089538574219,
153.3645782470703
],
"kps_scores": 1.0,
"index": 7
},
{
"kps": [
409.3253173828125,
152.9347686767578
],
"kps_scores": 1.0,
"index": 8
},
{
"kps": [
404.74853515625,
152.21153259277344
],
"kps_scores": 1.0,
"index": 9
},
{
"kps": [
404.3977355957031,
152.19647216796875
],
"kps_scores": 1.0,
"index": 10
},
{
"kps": [
396.53131103515625,
152.09912109375
],
"kps_scores": 1.0,
"index": 11
},
{
"kps": [
393.76605224609375,
151.91282653808594
],
"kps_scores": 1.0,
"index": 12
},
{
"kps": [
393.28106689453125,
151.76124572753906
],
"kps_scores": 1.0,
"index": 13
},
{
"kps": [
383.2342834472656,
152.3790740966797
],
"kps_scores": 1.0,
"index": 14
},
{
"kps": [
379.7545471191406,
152.79055786132812
],
"kps_scores": 1.0,
"index": 15
},
{
"kps": [
379.8231506347656,
152.8155975341797
],
"kps_scores": 1.0,
"index": 16
},
{
"kps": [
370.0028076171875,
155.16213989257812
],
"kps_scores": 1.0,
"index": 17
},
{
"kps": [
366.5267639160156,
155.72059631347656
],
"kps_scores": 1.0,
"index": 18
},
{
"kps": [
366.69610595703125,
156.3056182861328
],
"kps_scores": 1.0,
"index": 19
},
{
"kps": [
359.8770751953125,
158.69798278808594
],
"kps_scores": 1.0,
"index": 20
},
{
"kps": [
356.67681884765625,
160.0414581298828
],
"kps_scores": 1.0,
"index": 21
},
{
"kps": [
348.1063232421875,
163.32858276367188
],
"kps_scores": 1.0,
"index": 22
},
{
"kps": [
343.6862487792969,
165.0043182373047
],
"kps_scores": 1.0,
"index": 23
},
{
"kps": [
339.2411804199219,
167.18580627441406
],
"kps_scores": 1.0,
"index": 24
},
{
"kps": [
330.0,
170.0
],
"kps_scores": 0.0,
"index": 25
},
{
"kps": [
322.0425720214844,
174.9293975830078
],
"kps_scores": 1.0,
"index": 26
},
{
"kps": [
310.0,
176.0
],
"kps_scores": 0.0,
"index": 27
},
{
"kps": [
305.0433349609375,
178.03123474121094
],
"kps_scores": 1.0,
"index": 28
},
{
"kps": [
293.71295166015625,
183.8294219970703
],
"kps_scores": 1.0,
"index": 29
},
{
"kps": [
291.28656005859375,
184.33445739746094
],
"kps_scores": 1.0,
"index": 30
},
{
"kps": [
281.0,
190.0
],
"kps_scores": 0.0,
"index": 31
},
{
"kps": [
272.0,
200.0
],
"kps_scores": 0.0,
"index": 32
},
{
"kps": [
261.0457763671875,
211.67132568359375
],
"kps_scores": 1.0,
"index": 33
},
{
"kps": [
239.03567504882812,
248.68519592285156
],
"kps_scores": 1.0,
"index": 34
}
]

View File

@ -1,282 +0,0 @@
[
{
"kps": [
474.0,
215.00003051757812
],
"kps_scores": 1.0,
"index": 0
},
{
"kps": [
474.0710754394531,
215.04542541503906
],
"kps_scores": 1.0,
"index": 1
},
{
"kps": [
476.81365966796875,
215.0387420654297
],
"kps_scores": 1.0,
"index": 2
},
{
"kps": [
479.3288269042969,
214.4371795654297
],
"kps_scores": 1.0,
"index": 3
},
{
"kps": [
479.3817443847656,
214.49256896972656
],
"kps_scores": 1.0,
"index": 4
},
{
"kps": [
483.0047302246094,
213.85231018066406
],
"kps_scores": 1.0,
"index": 5
},
{
"kps": [
484.1208801269531,
213.64219665527344
],
"kps_scores": 1.0,
"index": 6
},
{
"kps": [
484.140869140625,
213.63470458984375
],
"kps_scores": 1.0,
"index": 7
},
{
"kps": [
487.458251953125,
213.45497131347656
],
"kps_scores": 1.0,
"index": 8
},
{
"kps": [
488.8343505859375,
213.4651336669922
],
"kps_scores": 1.0,
"index": 9
},
{
"kps": [
488.899658203125,
213.48526000976562
],
"kps_scores": 1.0,
"index": 10
},
{
"kps": [
493.831787109375,
214.70533752441406
],
"kps_scores": 1.0,
"index": 11
},
{
"kps": [
495.60980224609375,
215.26271057128906
],
"kps_scores": 1.0,
"index": 12
},
{
"kps": [
495.5881042480469,
215.2436065673828
],
"kps_scores": 1.0,
"index": 13
},
{
"kps": [
502.015380859375,
217.81201171875
],
"kps_scores": 1.0,
"index": 14
},
{
"kps": [
504.2356262207031,
218.78392028808594
],
"kps_scores": 1.0,
"index": 15
},
{
"kps": [
504.2625427246094,
218.81021118164062
],
"kps_scores": 1.0,
"index": 16
},
{
"kps": [
511.97552490234375,
222.26150512695312
],
"kps_scores": 1.0,
"index": 17
},
{
"kps": [
514.9180908203125,
224.3387908935547
],
"kps_scores": 1.0,
"index": 18
},
{
"kps": [
514.7620239257812,
224.2892608642578
],
"kps_scores": 1.0,
"index": 19
},
{
"kps": [
524.9593505859375,
230.30003356933594
],
"kps_scores": 1.0,
"index": 20
},
{
"kps": [
528.3402709960938,
232.76568603515625
],
"kps_scores": 1.0,
"index": 21
},
{
"kps": [
528.371826171875,
232.73399353027344
],
"kps_scores": 1.0,
"index": 22
},
{
"kps": [
538.7906494140625,
240.9889678955078
],
"kps_scores": 1.0,
"index": 23
},
{
"kps": [
538.7630004882812,
241.00299072265625
],
"kps_scores": 1.0,
"index": 24
},
{
"kps": [
550.0248413085938,
248.24708557128906
],
"kps_scores": 1.0,
"index": 25
},
{
"kps": [
554.3512573242188,
250.6501922607422
],
"kps_scores": 1.0,
"index": 26
},
{
"kps": [
554.0921020507812,
250.47769165039062
],
"kps_scores": 1.0,
"index": 27
},
{
"kps": [
567.93212890625,
266.1629943847656
],
"kps_scores": 1.0,
"index": 28
},
{
"kps": [
571.8528442382812,
273.5104675292969
],
"kps_scores": 1.0,
"index": 29
},
{
"kps": [
571.9888305664062,
273.5711669921875
],
"kps_scores": 1.0,
"index": 30
},
{
"kps": [
586.6533203125,
309.09576416015625
],
"kps_scores": 1.0,
"index": 31
},
{
"kps": [
591.8392944335938,
325.38385009765625
],
"kps_scores": 1.0,
"index": 32
},
{
"kps": [
592.3212280273438,
325.2934265136719
],
"kps_scores": 1.0,
"index": 33
},
{
"kps": [
603.3639526367188,
362.4980773925781
],
"kps_scores": 1.0,
"index": 34
}
]

View File

@ -1,282 +0,0 @@
[
{
"kps": [
461.0,
164.0
],
"kps_scores": 1.0,
"index": 0
},
{
"kps": [
460.9234619140625,
164.2275390625
],
"kps_scores": 1.0,
"index": 1
},
{
"kps": [
460.93524169921875,
164.19480895996094
],
"kps_scores": 1.0,
"index": 2
},
{
"kps": [
460.4592590332031,
164.14320373535156
],
"kps_scores": 1.0,
"index": 3
},
{
"kps": [
459.9245910644531,
164.054931640625
],
"kps_scores": 1.0,
"index": 4
},
{
"kps": [
459.8656921386719,
164.08154296875
],
"kps_scores": 1.0,
"index": 5
},
{
"kps": [
456.9087219238281,
163.1707305908203
],
"kps_scores": 1.0,
"index": 6
},
{
"kps": [
455.7566223144531,
162.69784545898438
],
"kps_scores": 1.0,
"index": 7
},
{
"kps": [
455.740478515625,
162.74818420410156
],
"kps_scores": 1.0,
"index": 8
},
{
"kps": [
449.8667907714844,
161.95462036132812
],
"kps_scores": 1.0,
"index": 9
},
{
"kps": [
447.55975341796875,
162.12559509277344
],
"kps_scores": 1.0,
"index": 10
},
{
"kps": [
447.5325012207031,
162.12460327148438
],
"kps_scores": 1.0,
"index": 11
},
{
"kps": [
439.9998474121094,
162.59873962402344
],
"kps_scores": 1.0,
"index": 12
},
{
"kps": [
437.3090515136719,
162.88577270507812
],
"kps_scores": 1.0,
"index": 13
},
{
"kps": [
437.2088623046875,
162.84994506835938
],
"kps_scores": 1.0,
"index": 14
},
{
"kps": [
429.199951171875,
164.5860595703125
],
"kps_scores": 1.0,
"index": 15
},
{
"kps": [
429.32745361328125,
164.66001892089844
],
"kps_scores": 1.0,
"index": 16
},
{
"kps": [
424.8293762207031,
166.40106201171875
],
"kps_scores": 1.0,
"index": 17
},
{
"kps": [
419.6496887207031,
168.80294799804688
],
"kps_scores": 1.0,
"index": 18
},
{
"kps": [
419.6795349121094,
168.93418884277344
],
"kps_scores": 1.0,
"index": 19
},
{
"kps": [
414.8919677734375,
172.65428161621094
],
"kps_scores": 1.0,
"index": 20
},
{
"kps": [
410.0992431640625,
175.77218627929688
],
"kps_scores": 1.0,
"index": 21
},
{
"kps": [
410.0442810058594,
175.911376953125
],
"kps_scores": 1.0,
"index": 22
},
{
"kps": [
400.20159912109375,
184.33380126953125
],
"kps_scores": 1.0,
"index": 23
},
{
"kps": [
396.4606628417969,
186.7172088623047
],
"kps_scores": 1.0,
"index": 24
},
{
"kps": [
396.3185119628906,
186.76808166503906
],
"kps_scores": 1.0,
"index": 25
},
{
"kps": [
382.623291015625,
192.941650390625
],
"kps_scores": 1.0,
"index": 26
},
{
"kps": [
376.8236999511719,
195.2269744873047
],
"kps_scores": 1.0,
"index": 27
},
{
"kps": [
376.66937255859375,
195.1109161376953
],
"kps_scores": 1.0,
"index": 28
},
{
"kps": [
362.7231750488281,
209.30923461914062
],
"kps_scores": 1.0,
"index": 29
},
{
"kps": [
355.9901123046875,
216.26303100585938
],
"kps_scores": 1.0,
"index": 30
},
{
"kps": [
356.3956298828125,
216.3310546875
],
"kps_scores": 1.0,
"index": 31
},
{
"kps": [
343.6780090332031,
235.2663116455078
],
"kps_scores": 1.0,
"index": 32
},
{
"kps": [
332.50238037109375,
261.8990783691406
],
"kps_scores": 1.0,
"index": 33
},
{
"kps": [
332.8721923828125,
261.7060546875
],
"kps_scores": 1.0,
"index": 34
}
]

File diff suppressed because one or more lines are too long

3268
play.ipynb

File diff suppressed because it is too large Load Diff

View File

@ -64,6 +64,7 @@ from app.tracking import (
TrackingID,
AffinityResult,
LastDifferenceVelocityFilter,
LeastMeanSquareVelocityFilter,
Tracking,
TrackingState,
)
@ -438,12 +439,12 @@ def triangulate_one_point_from_multiple_views_linear(
) -> Float[Array, "3"]:
"""
Args:
proj_matrices: 形状为(N, 3, 4)的投影矩阵序列
points: 形状为(N, 2)的点坐标序列
confidences: 形状为(N,)的置信度序列,范围[0.0, 1.0]
proj_matrices: (N, 3, 4) projection matrices
points: (N, 2) image-coordinates per view
confidences: (N,) optional per-view confidences in [0,1]
Returns:
point_3d: 形状为(3,)的三角测量得到的3D点
(3,) 3D point
"""
assert len(proj_matrices) == len(points)
@ -469,7 +470,7 @@ def triangulate_one_point_from_multiple_views_linear(
# replace the Python `if` with a jnp.where
point_3d_homo = jnp.where(
point_3d_homo[3] < 0, # predicate (scalar bool tracer)
point_3d_homo[3] <= 0, # predicate (scalar bool tracer)
-point_3d_homo, # if True
point_3d_homo, # if False
)
@ -493,14 +494,14 @@ def triangulate_points_from_multiple_views_linear(
confidences: (N, P, 1) optional per-view confidences in [0,1]
Returns:
(P, 3) 3D point for each of the P tracks
(P, 3) 3D point for each of the P
"""
N, P, _ = points.shape
assert proj_matrices.shape[0] == N
if confidences is None:
conf = jnp.ones((N, P), dtype=jnp.float32)
else:
conf = jnp.sqrt(jnp.clip(confidences, 0.0, 1.0))
conf = confidences
# vectorize your one-point routine over P
vmap_triangulate = jax.vmap(
@ -578,7 +579,7 @@ def triangulate_one_point_from_multiple_views_linear_time_weighted(
# Ensure homogeneous coordinate is positive
point_3d_homo = jnp.where(
point_3d_homo[3] < 0,
point_3d_homo[3] <= 0,
-point_3d_homo,
point_3d_homo,
)
@ -679,6 +680,8 @@ def group_by_cluster_by_camera(
eld = r[el.camera.id]
preserved = max([eld, el], key=lambda x: x.timestamp)
r[el.camera.id] = preserved
else:
r[el.camera.id] = el
return pmap(r)
@ -714,7 +717,11 @@ class GlobalTrackingState:
tracking = Tracking(
id=next_id,
state=tracking_state,
velocity_filter=LastDifferenceVelocityFilter(kps_3d, latest_timestamp),
# velocity_filter=LastDifferenceVelocityFilter(kps_3d, latest_timestamp),
velocity_filter=LeastMeanSquareVelocityFilter(
historical_3d_poses=[kps_3d],
historical_timestamps=[latest_timestamp],
),
)
self._trackings[next_id] = tracking
self._last_id = next_id

File diff suppressed because one or more lines are too long

View File

@ -14,7 +14,6 @@ dependencies = [
"jaxtyping>=0.2.38",
"jupytext>=1.17.0",
"matplotlib>=3.10.1",
"more-itertools>=10.7.0",
"opencv-python-headless>=4.11.0.86",
"optax>=0.2.4",
"orjson>=3.10.15",
@ -24,7 +23,6 @@ dependencies = [
"pyrsistent>=0.20.0",
"pytest>=8.3.5",
"scipy>=1.15.2",
"shapely>=2.1.1",
"torch>=2.6.0",
"torchvision>=0.21.0",
"typeguard>=4.4.2",

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,122 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 16,
"id": "0d48b7eb",
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"from pathlib import Path\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "dfd27584",
"metadata": {},
"outputs": [],
"source": [
"KPS_PATH = Path(\"samples/WeiHua_03.json\")\n",
"with open(KPS_PATH, \"r\") as file:\n",
" data = json.load(file)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "360f9c50",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'index:1, shape: (33, 133, 3)'"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"'index:2, shape: (662, 133, 3)'"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"for item_object_index in data.keys():\n",
" item_object = np.array(data[item_object_index])\n",
" display(f'index:{item_object_index}, shape: {item_object.shape}')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 对data['2']的662帧3d关键点数据进行滑动窗口平滑处理\n",
"object_points = np.array(data['2']) # shape: (662, 133, 3)\n",
"window_size = 5\n",
"kernel = np.ones(window_size) / window_size\n",
"# 对每个关键点的每个坐标轴分别做滑动平均\n",
"smoothed_points = np.zeros_like(object_points)\n",
"# 遍历133个关节\n",
"for kp_idx in range(object_points.shape[1]):\n",
" # 遍历每个关节的空间三维坐标点\n",
" for axis in range(3):\n",
" # 对第i帧的滑动平滑方式 smoothed[i] = (point[i-2] + point[i-1] + point[i] + point[i+1] + point[i+2]) / 5\n",
" smoothed_points[:, kp_idx, axis] = np.convolve(object_points[:, kp_idx, axis], kernel, mode='same')"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "24c6c0c9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'smoothed_points shape: (662, 133, 3)'"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display(f'smoothed_points shape: {smoothed_points.shape}')\n",
"with open(\"samples/smoothed_3d_kps.json\", \"w\") as file:\n",
" json.dump({'1':smoothed_points.tolist()}, file)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "cvth3pe",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,193 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 8,
"id": "11cc2345",
"metadata": {},
"outputs": [],
"source": [
"import awkward as ak\n",
"import numpy as np\n",
"from pathlib import Path"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "84348d97",
"metadata": {},
"outputs": [],
"source": [
"CAMERA_INDEX ={\n",
" 2:\"5602\",\n",
" 4:\"5604\",\n",
"}\n",
"index = 4\n",
"CAMERA_PATH = Path(\"/home/admin/Documents/ActualTest_QuanCheng/camera_ex_params_1_2025_4_20/camera_params\")\n",
"camera_data = ak.from_parquet(CAMERA_PATH / CAMERA_INDEX[index]/ \"extrinsic.parquet\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "1d771740",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<pre>[{rvec: [[-2.26], [0.0669], [-2.15]], tvec: [[0.166], ...]},\n",
" {rvec: [[2.07], [0.144], [2.21]], tvec: [[0.143], ...]},\n",
" {rvec: [[2.09], [0.0872], [2.25]], tvec: [[0.141], ...]},\n",
" {rvec: [[2.16], [0.172], [2.09]], tvec: [[0.162], ...]},\n",
" {rvec: [[2.15], [0.18], [2.09]], tvec: [[0.162], ...]},\n",
" {rvec: [[-2.22], [0.117], [-2.14]], tvec: [[0.162], ...]},\n",
" {rvec: [[2.18], [0.176], [2.08]], tvec: [[0.166], ...]},\n",
" {rvec: [[2.18], [0.176], [2.08]], tvec: [[0.166], ...]},\n",
" {rvec: [[-2.26], [0.116], [-2.1]], tvec: [[0.17], ...]},\n",
" {rvec: [[-2.26], [0.124], [-2.09]], tvec: [[0.171], ...]},\n",
" ...,\n",
" {rvec: [[-2.2], [0.0998], [-2.17]], tvec: [[0.158], ...]},\n",
" {rvec: [[-2.2], [0.0998], [-2.17]], tvec: [[0.158], ...]},\n",
" {rvec: [[2.12], [0.151], [2.16]], tvec: [[0.152], ...]},\n",
" {rvec: [[-2.3], [0.0733], [-2.1]], tvec: [[0.175], ...]},\n",
" {rvec: [[2.1], [0.16], [2.17]], tvec: [[0.149], ...]},\n",
" {rvec: [[2.1], [0.191], [2.13]], tvec: [[0.153], ...]},\n",
" {rvec: [[2.11], [0.196], [2.12]], tvec: [[0.154], ...]},\n",
" {rvec: [[2.19], [0.171], [2.08]], tvec: [[0.166], ...]},\n",
" {rvec: [[2.24], [0.0604], [2.12]], tvec: [[0.166], ...]}]\n",
"---------------------------------------------------------------------------\n",
"backend: cpu\n",
"nbytes: 10.1 kB\n",
"type: 90 * {\n",
" rvec: var * var * float64,\n",
" tvec: var * var * float64\n",
"}</pre>"
],
"text/plain": [
"<Array [{rvec: [...], tvec: [...]}, ..., {...}] type='90 * {rvec: var * var...'>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display(camera_data)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "59fde11b",
"metadata": {},
"outputs": [],
"source": [
"data = []\n",
"for element in camera_data:\n",
" rvec = element[\"rvec\"]\n",
" if rvec[0]<0:\n",
" data.append({\"rvec\": rvec, \"tvec\": element[\"tvec\"]})"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "4792cbc4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<pyarrow._parquet.FileMetaData object at 0x7799cbf62d40>\n",
" created_by: parquet-cpp-arrow version 19.0.1\n",
" num_columns: 2\n",
" num_rows: 30\n",
" num_row_groups: 1\n",
" format_version: 2.6\n",
" serialized_size: 0"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ak.to_parquet(ak.from_iter(data),\"/home/admin/Documents/ActualTest_QuanCheng/camera_ex_params_1_2025_4_20/camera_params/5604/re_extrinsic.parquet\")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "8225ee33",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<pre>[{rvec: [[-2.26], [0.0669], [-2.15]], tvec: [[0.166], ...]},\n",
" {rvec: [[-2.22], [0.117], [-2.14]], tvec: [[0.162], ...]},\n",
" {rvec: [[-2.26], [0.116], [-2.1]], tvec: [[0.17], ...]},\n",
" {rvec: [[-2.26], [0.124], [-2.09]], tvec: [[0.171], ...]},\n",
" {rvec: [[-2.24], [0.133], [-2.11]], tvec: [[0.167], ...]},\n",
" {rvec: [[-2.22], [0.0556], [-2.2]], tvec: [[0.158], ...]},\n",
" {rvec: [[-2.27], [0.119], [-2.09]], tvec: [[0.172], ...]},\n",
" {rvec: [[-2.34], [0.0663], [-2.06]], tvec: [[0.181], ...]},\n",
" {rvec: [[-2.21], [0.117], [-2.15]], tvec: [[0.161], ...]},\n",
" {rvec: [[-2.33], [0.0731], [-2.08]], tvec: [[0.179], ...]},\n",
" ...,\n",
" {rvec: [[-2.23], [0.106], [-2.13]], tvec: [[0.166], ...]},\n",
" {rvec: [[-2.21], [0.054], [-2.2]], tvec: [[0.157], ...]},\n",
" {rvec: [[-2.19], [0.0169], [-2.25]], tvec: [[0.151], ...]},\n",
" {rvec: [[-2.2], [0.0719], [-2.19]], tvec: [[0.157], ...]},\n",
" {rvec: [[-2.22], [0.0726], [-2.18]], tvec: [[0.161], ...]},\n",
" {rvec: [[-2.2], [0.0742], [-2.19]], tvec: [[0.158], ...]},\n",
" {rvec: [[-2.2], [0.0998], [-2.17]], tvec: [[0.158], ...]},\n",
" {rvec: [[-2.2], [0.0998], [-2.17]], tvec: [[0.158], ...]},\n",
" {rvec: [[-2.3], [0.0733], [-2.1]], tvec: [[0.175], ...]}]\n",
"---------------------------------------------------------------------------\n",
"backend: cpu\n",
"nbytes: 3.4 kB\n",
"type: 30 * {\n",
" rvec: var * var * float64,\n",
" tvec: var * var * float64\n",
"}</pre>"
],
"text/plain": [
"<Array [{rvec: [...], tvec: [...]}, ..., {...}] type='30 * {rvec: var * var...'>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"temp_data = ak.from_parquet(\"/home/admin/Documents/ActualTest_QuanCheng/camera_ex_params_1_2025_4_20/camera_params/5604/re_extrinsic.parquet\")\n",
"display(temp_data)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

3743
uv.lock generated

File diff suppressed because it is too large Load Diff