1
0
forked from HQU-gxy/CVTH3PE
Files
CVTH3PE/playground.py
crosstyan 4bc3fce0b1 feat: Add minimum affinity filter to affinity result grouping
- Introduced a `min_affinity` parameter to the `affinity_result_by_tracking` function, allowing users to specify a threshold for filtering affinity results.
- Updated the logic to skip results with affinities below the specified minimum, enhancing the relevance of grouped detections.
- Improved function documentation to include details about the new parameter and its purpose.
2025-05-03 17:29:50 +08:00

1277 lines
40 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.17.0
# kernelspec:
# display_name: .venv
# language: python
# name: python3
# ---
# %%
from collections import OrderedDict
from copy import copy as shallow_copy
from copy import deepcopy as deep_copy
from dataclasses import dataclass
from datetime import datetime, timedelta
from functools import partial, reduce
from itertools import chain
from pathlib import Path
from typing import (
Any,
Generator,
Optional,
TypeAlias,
TypedDict,
TypeVar,
cast,
overload,
Iterable,
)
import awkward as ak
import jax
import jax.numpy as jnp
import numpy as np
from beartype import beartype
from beartype.typing import Mapping, Sequence
from cv2 import undistortPoints
from IPython.display import display
from jaxtyping import Array, Float, Num, jaxtyped
from matplotlib import pyplot as plt
from numpy.typing import ArrayLike
from optax.assignment import hungarian_algorithm as linear_sum_assignment
from pyrsistent import pvector, v, m, pmap, PMap, freeze, thaw
from scipy.spatial.transform import Rotation as R
from typing_extensions import deprecated
from collections import defaultdict
from app.camera import (
Camera,
CameraID,
CameraParams,
Detection,
calculate_affinity_matrix_by_epipolar_constraint,
classify_by_camera,
)
from app.solver._old import GLPKSolver
from app.tracking import (
TrackingID,
AffinityResult,
LastDifferenceVelocityFilter,
Tracking,
TrackingState,
)
from app.visualize.whole_body import visualize_whole_body
NDArray: TypeAlias = np.ndarray
# %%
DATASET_PATH = Path("samples") / "04_02"
AK_CAMERA_DATASET: ak.Array = ak.from_parquet(DATASET_PATH / "camera_params.parquet") # type: ignore
DELTA_T_MIN = timedelta(milliseconds=1)
display(AK_CAMERA_DATASET)
# %%
class Resolution(TypedDict):
width: int
height: int
class Intrinsic(TypedDict):
camera_matrix: Num[Array, "3 3"]
"""
K
"""
distortion_coefficients: Num[Array, "N"]
"""
distortion coefficients; usually 5
"""
class Extrinsic(TypedDict):
rvec: Num[NDArray, "3"]
tvec: Num[NDArray, "3"]
class ExternalCameraParams(TypedDict):
name: str
port: int
intrinsic: Intrinsic
extrinsic: Extrinsic
resolution: Resolution
# %%
def read_dataset_by_port(port: int) -> ak.Array:
P = DATASET_PATH / f"{port}.parquet"
return ak.from_parquet(P)
KEYPOINT_DATASET = {
int(p): read_dataset_by_port(p) for p in ak.to_numpy(AK_CAMERA_DATASET["port"])
}
# %%
class KeypointDataset(TypedDict):
frame_index: int
boxes: Num[NDArray, "N 4"]
kps: Num[NDArray, "N J 2"]
kps_scores: Num[NDArray, "N J"]
@jaxtyped(typechecker=beartype)
def to_transformation_matrix(
rvec: Num[NDArray, "3"], tvec: Num[NDArray, "3"]
) -> Num[NDArray, "4 4"]:
res = np.eye(4)
res[:3, :3] = R.from_rotvec(rvec).as_matrix()
res[:3, 3] = tvec
return res
@jaxtyped(typechecker=beartype)
def undistort_points(
points: Num[NDArray, "M 2"],
camera_matrix: Num[NDArray, "3 3"],
dist_coeffs: Num[NDArray, "N"],
) -> Num[NDArray, "M 2"]:
K = camera_matrix
dist = dist_coeffs
res = undistortPoints(points, K, dist, P=K) # type: ignore
return res.reshape(-1, 2)
def from_camera_params(camera: ExternalCameraParams) -> Camera:
rt = jnp.array(
to_transformation_matrix(
ak.to_numpy(camera["extrinsic"]["rvec"]),
ak.to_numpy(camera["extrinsic"]["tvec"]),
)
)
K = jnp.array(camera["intrinsic"]["camera_matrix"]).reshape(3, 3)
dist_coeffs = jnp.array(camera["intrinsic"]["distortion_coefficients"])
image_size = jnp.array(
(camera["resolution"]["width"], camera["resolution"]["height"])
)
return Camera(
id=camera["name"],
params=CameraParams(
K=K,
Rt=rt,
dist_coeffs=dist_coeffs,
image_size=image_size,
),
)
def preprocess_keypoint_dataset(
dataset: Sequence[KeypointDataset],
camera: Camera,
fps: float,
start_timestamp: datetime,
) -> Generator[Detection, None, None]:
frame_interval_s = 1 / fps
for el in dataset:
frame_index = el["frame_index"]
timestamp = start_timestamp + timedelta(seconds=frame_index * frame_interval_s)
for kp, kp_score in zip(el["kps"], el["kps_scores"]):
yield Detection(
keypoints=jnp.array(kp),
confidences=jnp.array(kp_score),
camera=camera,
timestamp=timestamp,
)
# %%
DetectionGenerator: TypeAlias = Generator[Detection, None, None]
def sync_batch_gen(gens: Sequence[DetectionGenerator], diff: timedelta):
"""
given a list of detection generators, return a generator that yields a batch of detections
Args:
gens: list of detection generators
diff: maximum timestamp difference between detections to consider them part of the same batch
"""
N = len(gens)
last_batch_timestamp: Optional[datetime] = None
next_batch_timestamp: Optional[datetime] = None
current_batch: list[Detection] = []
next_batch: list[Detection] = []
paused: list[bool] = [False] * N
finished: list[bool] = [False] * N
def reset_paused():
"""
reset paused list based on finished list
"""
for i in range(N):
if not finished[i]:
paused[i] = False
else:
paused[i] = True
EPS = 1e-6
# a small epsilon to avoid floating point precision issues
diff_esp = diff - timedelta(seconds=EPS)
while True:
for i, gen in enumerate(gens):
try:
if finished[i] or paused[i]:
continue
val = next(gen)
if last_batch_timestamp is None:
last_batch_timestamp = val.timestamp
current_batch.append(val)
else:
if abs(val.timestamp - last_batch_timestamp) >= diff_esp:
next_batch.append(val)
if next_batch_timestamp is None:
next_batch_timestamp = val.timestamp
paused[i] = True
if all(paused):
yield current_batch
current_batch = next_batch
next_batch = []
last_batch_timestamp = next_batch_timestamp
next_batch_timestamp = None
reset_paused()
else:
current_batch.append(val)
except StopIteration:
finished[i] = True
paused[i] = True
if all(finished):
if len(current_batch) > 0:
# All generators exhausted, flush remaining batch and exit
yield current_batch
break
# %%
@overload
def to_projection_matrix(
transformation_matrix: Num[NDArray, "4 4"], camera_matrix: Num[NDArray, "3 3"]
) -> Num[NDArray, "3 4"]: ...
@overload
def to_projection_matrix(
transformation_matrix: Num[Array, "4 4"], camera_matrix: Num[Array, "3 3"]
) -> Num[Array, "3 4"]: ...
@jaxtyped(typechecker=beartype)
def to_projection_matrix(
transformation_matrix: Num[Any, "4 4"],
camera_matrix: Num[Any, "3 3"],
) -> Num[Any, "3 4"]:
return camera_matrix @ transformation_matrix[:3, :]
to_projection_matrix_jit = jax.jit(to_projection_matrix)
@jaxtyped(typechecker=beartype)
def dlt(
H1: Num[NDArray, "3 4"],
H2: Num[NDArray, "3 4"],
p1: Num[NDArray, "2"],
p2: Num[NDArray, "2"],
) -> Num[NDArray, "3"]:
"""
Direct Linear Transformation
"""
A = [
p1[1] * H1[2, :] - H1[1, :],
H1[0, :] - p1[0] * H1[2, :],
p2[1] * H2[2, :] - H2[1, :],
H2[0, :] - p2[0] * H2[2, :],
]
A = np.array(A).reshape((4, 4))
B = A.transpose() @ A
from scipy import linalg
U, s, Vh = linalg.svd(B, full_matrices=False)
return Vh[3, 0:3] / Vh[3, 3]
@overload
def homogeneous_to_euclidean(points: Num[NDArray, "N 4"]) -> Num[NDArray, "N 3"]: ...
@overload
def homogeneous_to_euclidean(points: Num[Array, "N 4"]) -> Num[Array, "N 3"]: ...
@jaxtyped(typechecker=beartype)
def homogeneous_to_euclidean(
points: Num[Any, "N 4"],
) -> Num[Any, "N 3"]:
"""
将齐次坐标转换为欧几里得坐标
Args:
points: homogeneous coordinates (x, y, z, w) in numpy array or jax array
Returns:
euclidean coordinates (x, y, z) in numpy array or jax array
"""
return points[..., :-1] / points[..., -1:]
# %%
FPS = 24
image_gen_5600 = preprocess_keypoint_dataset(KEYPOINT_DATASET[5600], from_camera_params(AK_CAMERA_DATASET[AK_CAMERA_DATASET["port"] == 5600][0]), FPS, datetime(2024, 4, 2, 12, 0, 0)) # type: ignore
image_gen_5601 = preprocess_keypoint_dataset(KEYPOINT_DATASET[5601], from_camera_params(AK_CAMERA_DATASET[AK_CAMERA_DATASET["port"] == 5601][0]), FPS, datetime(2024, 4, 2, 12, 0, 0)) # type: ignore
image_gen_5602 = preprocess_keypoint_dataset(KEYPOINT_DATASET[5602], from_camera_params(AK_CAMERA_DATASET[AK_CAMERA_DATASET["port"] == 5602][0]), FPS, datetime(2024, 4, 2, 12, 0, 0)) # type: ignore
display(1 / FPS)
sync_gen = sync_batch_gen(
[image_gen_5600, image_gen_5601, image_gen_5602], timedelta(seconds=1 / FPS)
)
# %%
sorted_detections, affinity_matrix = calculate_affinity_matrix_by_epipolar_constraint(
next(sync_gen), alpha_2d=2000
)
display(sorted_detections)
# %%
display(
list(
map(
lambda x: {"timestamp": str(x.timestamp), "camera": x.camera.id},
sorted_detections,
)
)
)
with jnp.printoptions(precision=3, suppress=True):
display(affinity_matrix)
# %%
def clusters_to_detections(
clusters: Sequence[Sequence[int]], sorted_detections: Sequence[Detection]
) -> list[list[Detection]]:
"""
given a list of clusters (which is the indices of the detections in the sorted_detections list),
extract the detections from the sorted_detections list
Args:
clusters: list of clusters, each cluster is a list of indices of the detections in the `sorted_detections` list
sorted_detections: list of SORTED detections
Returns:
list of clusters, each cluster is a list of detections
"""
return [[sorted_detections[i] for i in cluster] for cluster in clusters]
solver = GLPKSolver()
aff_np = np.asarray(affinity_matrix).astype(np.float64)
clusters, sol_matrix = solver.solve(aff_np)
display(clusters)
display(sol_matrix)
# %%
T = TypeVar("T")
def flatten_values(
d: Mapping[Any, Sequence[T]],
) -> list[T]:
"""
Flatten a dictionary of sequences into a single list of values.
"""
return [v for vs in d.values() for v in vs]
def flatten_values_len(
d: Mapping[Any, Sequence[T]],
) -> int:
"""
Flatten a dictionary of sequences into a single list of values.
"""
val = reduce(lambda acc, xs: acc + len(xs), d.values(), 0)
return val
# %%
WIDTH = 2560
HEIGHT = 1440
clusters_detections = clusters_to_detections(clusters, sorted_detections)
im = np.zeros((HEIGHT, WIDTH, 3), dtype=np.uint8)
for el in clusters_detections[0]:
im = visualize_whole_body(np.asarray(el.keypoints), im)
p = plt.imshow(im)
display(p)
# %%
im_prime = np.zeros((HEIGHT, WIDTH, 3), dtype=np.uint8)
for el in clusters_detections[1]:
im_prime = visualize_whole_body(np.asarray(el.keypoints), im_prime)
p_prime = plt.imshow(im_prime)
display(p_prime)
# %%
@jaxtyped(typechecker=beartype)
def triangulate_one_point_from_multiple_views_linear(
proj_matrices: Float[Array, "N 3 4"],
points: Num[Array, "N 2"],
confidences: Optional[Float[Array, "N"]] = None,
) -> Float[Array, "3"]:
"""
Args:
proj_matrices: 形状为(N, 3, 4)的投影矩阵序列
points: 形状为(N, 2)的点坐标序列
confidences: 形状为(N,)的置信度序列,范围[0.0, 1.0]
Returns:
point_3d: 形状为(3,)的三角测量得到的3D点
"""
assert len(proj_matrices) == len(points)
N = len(proj_matrices)
confi: Float[Array, "N"]
if confidences is None:
confi = jnp.ones(N, dtype=np.float32)
else:
# Use square root of confidences for weighting - more balanced approach
confi = jnp.sqrt(jnp.clip(confidences, 0, 1))
A = jnp.zeros((N * 2, 4), dtype=np.float32)
for i in range(N):
x, y = points[i]
A = A.at[2 * i].set(proj_matrices[i, 2] * x - proj_matrices[i, 0])
A = A.at[2 * i + 1].set(proj_matrices[i, 2] * y - proj_matrices[i, 1])
A = A.at[2 * i].mul(confi[i])
A = A.at[2 * i + 1].mul(confi[i])
# https://docs.jax.dev/en/latest/_autosummary/jax.numpy.linalg.svd.html
_, _, vh = jnp.linalg.svd(A, full_matrices=False)
point_3d_homo = vh[-1] # shape (4,)
# replace the Python `if` with a jnp.where
point_3d_homo = jnp.where(
point_3d_homo[3] < 0, # predicate (scalar bool tracer)
-point_3d_homo, # if True
point_3d_homo, # if False
)
point_3d = point_3d_homo[:3] / point_3d_homo[3]
return point_3d
@jaxtyped(typechecker=beartype)
def triangulate_points_from_multiple_views_linear(
proj_matrices: Float[Array, "N 3 4"],
points: Num[Array, "N P 2"],
confidences: Optional[Float[Array, "N P"]] = None,
) -> Float[Array, "P 3"]:
"""
Batch-triangulate P points observed by N cameras, linearly via SVD.
Args:
proj_matrices: (N, 3, 4) projection matrices
points: (N, P, 2) image-coordinates per view
confidences: (N, P, 1) optional per-view confidences in [0,1]
Returns:
(P, 3) 3D point for each of the P tracks
"""
N, P, _ = points.shape
assert proj_matrices.shape[0] == N
if confidences is None:
conf = jnp.ones((N, P), dtype=jnp.float32)
else:
conf = jnp.sqrt(jnp.clip(confidences, 0.0, 1.0))
# vectorize your one-point routine over P
vmap_triangulate = jax.vmap(
triangulate_one_point_from_multiple_views_linear,
in_axes=(None, 1, 1), # proj_matrices static, map over points[:,p,:], conf[:,p]
out_axes=0,
)
return vmap_triangulate(proj_matrices, points, conf)
# %%
@jaxtyped(typechecker=beartype)
def triangulate_one_point_from_multiple_views_linear_time_weighted(
proj_matrices: Float[Array, "N 3 4"],
points: Num[Array, "N 2"],
delta_t: Num[Array, "N"],
lambda_t: float = 10.0,
confidences: Optional[Float[Array, "N"]] = None,
) -> Float[Array, "3"]:
"""
Triangulate one point from multiple views with time-weighted linear least squares.
Implements the incremental reconstruction method from "Cross-View Tracking for Multi-Human 3D Pose"
with weighting formula: w_i = exp(-λ_t(t-t_i)) / ||c^i^T||_2
Args:
proj_matrices: Shape (N, 3, 4) projection matrices sequence
points: Shape (N, 2) point coordinates sequence
delta_t: Time differences between current time and each observation (in seconds)
lambda_t: Time penalty rate (higher values decrease influence of older observations)
confidences: Shape (N,) confidence values in range [0.0, 1.0]
Returns:
point_3d: Shape (3,) triangulated 3D point
"""
assert len(proj_matrices) == len(points)
assert len(delta_t) == len(points)
N = len(proj_matrices)
# Prepare confidence weights
confi: Float[Array, "N"]
if confidences is None:
confi = jnp.ones(N, dtype=np.float32)
else:
confi = jnp.sqrt(jnp.clip(confidences, 0, 1))
A = jnp.zeros((N * 2, 4), dtype=np.float32)
# First build the coefficient matrix without weights
for i in range(N):
x, y = points[i]
A = A.at[2 * i].set(proj_matrices[i, 2] * x - proj_matrices[i, 0])
A = A.at[2 * i + 1].set(proj_matrices[i, 2] * y - proj_matrices[i, 1])
# Then apply the time-based and confidence weights
for i in range(N):
# Calculate time-decay weight: e^(-λ_t * Δt)
time_weight = jnp.exp(-lambda_t * delta_t[i])
# Calculate normalization factor: ||c^i^T||_2
row_norm_1 = jnp.linalg.norm(A[2 * i])
row_norm_2 = jnp.linalg.norm(A[2 * i + 1])
# Apply combined weight: time_weight / row_norm * confidence
w1 = (time_weight / row_norm_1) * confi[i]
w2 = (time_weight / row_norm_2) * confi[i]
A = A.at[2 * i].mul(w1)
A = A.at[2 * i + 1].mul(w2)
# Solve using SVD
_, _, vh = jnp.linalg.svd(A, full_matrices=False)
point_3d_homo = vh[-1] # shape (4,)
# Ensure homogeneous coordinate is positive
point_3d_homo = jnp.where(
point_3d_homo[3] < 0,
-point_3d_homo,
point_3d_homo,
)
# Convert from homogeneous to Euclidean coordinates
point_3d = point_3d_homo[:3] / point_3d_homo[3]
return point_3d
@jaxtyped(typechecker=beartype)
def triangulate_points_from_multiple_views_linear_time_weighted(
proj_matrices: Float[Array, "N 3 4"],
points: Num[Array, "N P 2"],
delta_t: Num[Array, "N"],
lambda_t: float = 10.0,
confidences: Optional[Float[Array, "N P"]] = None,
) -> Float[Array, "P 3"]:
"""
Vectorized version that triangulates P points from N camera views with time-weighting.
This function uses JAX's vmap to efficiently triangulate multiple points in parallel.
Args:
proj_matrices: Shape (N, 3, 4) projection matrices for N cameras
points: Shape (N, P, 2) 2D points for P keypoints across N cameras
delta_t: Shape (N,) time differences between current time and each camera's timestamp (seconds)
lambda_t: Time penalty rate (higher values decrease influence of older observations)
confidences: Shape (N, P) confidence values for each point in each camera
Returns:
points_3d: Shape (P, 3) triangulated 3D points
"""
N, P, _ = points.shape
assert (
proj_matrices.shape[0] == N
), "Number of projection matrices must match number of cameras"
assert delta_t.shape[0] == N, "Number of time deltas must match number of cameras"
if confidences is None:
# Create uniform confidences if none provided
conf = jnp.ones((N, P), dtype=jnp.float32)
else:
conf = confidences
# Define the vmapped version of the single-point function
# We map over the second dimension (P points) of the input arrays
vmap_triangulate = jax.vmap(
triangulate_one_point_from_multiple_views_linear_time_weighted,
in_axes=(
None,
1,
None,
None,
1,
), # proj_matrices and delta_t static, map over points
out_axes=0, # Output has first dimension corresponding to points
)
# For each point p, extract the 2D coordinates from all cameras and triangulate
return vmap_triangulate(
proj_matrices, # (N, 3, 4) - static across points
points, # (N, P, 2) - map over dim 1 (P)
delta_t, # (N,) - static across points
lambda_t, # scalar - static
conf, # (N, P) - map over dim 1 (P)
)
# %%
@jaxtyped(typechecker=beartype)
def triangle_from_cluster(
cluster: Sequence[Detection],
) -> tuple[Float[Array, "N 3"], datetime]:
proj_matrices = jnp.array([el.camera.params.projection_matrix for el in cluster])
points = jnp.array([el.keypoints_undistorted for el in cluster])
confidences = jnp.array([el.confidences for el in cluster])
latest_timestamp = max(el.timestamp for el in cluster)
return (
triangulate_points_from_multiple_views_linear(
proj_matrices, points, confidences=confidences
),
latest_timestamp,
)
# %%
def group_by_cluster_by_camera(
cluster: Sequence[Detection],
) -> PMap[CameraID, Detection]:
"""
group the detections by camera, and preserve the latest detection for each camera
"""
r: dict[CameraID, Detection] = {}
for el in cluster:
if el.camera.id in r:
eld = r[el.camera.id]
preserved = max([eld, el], key=lambda x: x.timestamp)
r[el.camera.id] = preserved
return pmap(r)
class GlobalTrackingState:
_last_id: int
_trackings: dict[int, Tracking]
def __init__(self):
self._last_id = 0
self._trackings = {}
def __repr__(self) -> str:
return (
f"GlobalTrackingState(last_id={self._last_id}, trackings={self._trackings})"
)
@property
def trackings(self) -> dict[int, Tracking]:
return shallow_copy(self._trackings)
def add_tracking(self, cluster: Sequence[Detection]) -> Tracking:
if len(cluster) < 2:
raise ValueError(
"cluster must contain at least 2 detections to form a tracking"
)
kps_3d, latest_timestamp = triangle_from_cluster(cluster)
next_id = self._last_id + 1
tracking_state = TrackingState(
keypoints=kps_3d,
last_active_timestamp=latest_timestamp,
historical_detections_by_camera=group_by_cluster_by_camera(cluster),
)
tracking = Tracking(
id=next_id,
state=tracking_state,
velocity_filter=LastDifferenceVelocityFilter(kps_3d, latest_timestamp),
)
self._trackings[next_id] = tracking
self._last_id = next_id
return tracking
global_tracking_state = GlobalTrackingState()
for cluster in clusters_detections:
global_tracking_state.add_tracking(cluster)
display(global_tracking_state)
# %%
next_group = next(sync_gen)
display(next_group)
# %%
@jaxtyped(typechecker=beartype)
def calculate_distance_2d(
left: Num[Array, "J 2"],
right: Num[Array, "J 2"],
image_size: tuple[int, int] = (1, 1),
) -> Float[Array, "J"]:
"""
Calculate the *normalized* distance between two sets of keypoints.
Args:
left: The left keypoints
right: The right keypoints
image_size: The size of the image
Returns:
Array of normalized Euclidean distances between corresponding keypoints
"""
w, h = image_size
if w == 1 and h == 1:
# already normalized
left_normalized = left
right_normalized = right
else:
left_normalized = left / jnp.array([w, h])
right_normalized = right / jnp.array([w, h])
dist = jnp.linalg.norm(left_normalized - right_normalized, axis=-1)
return dist
@jaxtyped(typechecker=beartype)
def calculate_affinity_2d(
distance_2d: Float[Array, "J"],
delta_t: timedelta,
w_2d: float,
alpha_2d: float,
lambda_a: float,
) -> Float[Array, "J"]:
"""
Calculate the affinity between two detections based on the distances between their keypoints.
The affinity score is calculated by summing individual keypoint affinities:
A_2D = sum(w_2D * (1 - distance_2D / (alpha_2D*delta_t)) * np.exp(-lambda_a * delta_t)) for each keypoint
Args:
distance_2d: The normalized distances between keypoints (array with one value per keypoint)
w_2d: The weight for 2D affinity
alpha_2d: The normalization factor for distance
lambda_a: The decay rate for time difference
delta_t: The time delta between the two detections, in seconds
Returns:
Sum of affinity scores across all keypoints
"""
delta_t_s = delta_t.total_seconds()
affinity_per_keypoint = (
w_2d
* (1 - distance_2d / (alpha_2d * delta_t_s))
* jnp.exp(-lambda_a * delta_t_s)
)
return affinity_per_keypoint
@jaxtyped(typechecker=beartype)
def perpendicular_distance_point_to_line_two_points(
point: Num[Array, "3"], line: tuple[Num[Array, "3"], Num[Array, "3"]]
) -> Float[Array, ""]:
"""
Calculate the perpendicular distance between a point and a line.
where `line` is represented by two points: `(line_start, line_end)`
Args:
point: The point to calculate the distance to
line: The line to calculate the distance to, represented by two points
Returns:
The perpendicular distance between the point and the line
(should be a scalar in `float`)
"""
line_start, line_end = line
distance = jnp.linalg.norm(
jnp.cross(line_end - line_start, line_start - point)
) / jnp.linalg.norm(line_end - line_start)
return distance
@jaxtyped(typechecker=beartype)
def perpendicular_distance_camera_2d_points_to_tracking_raycasting(
detection: Detection,
tracking: Tracking,
delta_t: timedelta,
) -> Float[Array, "J"]:
"""
NOTE: `delta_t` is now taken from the caller and NOT recomputed internally.
Calculate the perpendicular distances between predicted 3D tracking points
and the rays cast from camera center through the 2D image points.
Args:
detection: The detection object containing 2D keypoints and camera parameters
tracking: The tracking object containing 3D keypoints
delta_t: Time delta between the tracking's last update and current observation
Returns:
Array of perpendicular distances for each keypoint
"""
camera = detection.camera
predicted_pose = tracking.predict(delta_t)
# Back-project the 2D points to 3D space
# intersection with z=0 plane
back_projected_points = detection.camera.unproject_points_to_z_plane(
detection.keypoints, z=0.0
)
camera_center = camera.params.location
def calc_distance(predicted_point, back_projected_point):
return perpendicular_distance_point_to_line_two_points(
predicted_point, (camera_center, back_projected_point)
)
# Vectorize over all keypoints
vmap_calc_distance = jax.vmap(calc_distance)
distances: Float[Array, "J"] = vmap_calc_distance(
predicted_pose, back_projected_points
)
return distances
@jaxtyped(typechecker=beartype)
def calculate_affinity_3d(
distances: Float[Array, "J"],
delta_t: timedelta,
w_3d: float,
alpha_3d: float,
lambda_a: float,
) -> Float[Array, "J"]:
"""
Calculate 3D affinity score between a tracking and detection.
The affinity score is calculated by summing individual keypoint affinities:
A_3D = sum(w_3D * (1 - dl / alpha_3D) * np.exp(-lambda_a * delta_t)) for each keypoint
Args:
distances: Array of perpendicular distances for each keypoint
delta_t: Time difference between tracking and detection
w_3d: Weight for 3D affinity
alpha_3d: Normalization factor for distance
lambda_a: Decay rate for time difference
Returns:
Sum of affinity scores across all keypoints
"""
delta_t_s = delta_t.total_seconds()
affinity_per_keypoint = (
w_3d * (1 - distances / alpha_3d) * jnp.exp(-lambda_a * delta_t_s)
)
return affinity_per_keypoint
@beartype
def calculate_tracking_detection_affinity(
tracking: Tracking,
detection: Detection,
w_2d: float,
alpha_2d: float,
w_3d: float,
alpha_3d: float,
lambda_a: float,
) -> float:
"""
Calculate the affinity between a tracking and a detection.
Args:
tracking: The tracking object
detection: The detection object
w_2d: Weight for 2D affinity
alpha_2d: Normalization factor for 2D distance
w_3d: Weight for 3D affinity
alpha_3d: Normalization factor for 3D distance
lambda_a: Decay rate for time difference
Returns:
Combined affinity score
"""
camera = detection.camera
delta_t_raw = detection.timestamp - tracking.state.last_active_timestamp
# Clamp delta_t to avoid division-by-zero / exploding affinity.
delta_t = max(delta_t_raw, DELTA_T_MIN)
# Calculate 2D affinity
tracking_2d_projection = camera.project(tracking.state.keypoints)
w, h = camera.params.image_size
distance_2d = calculate_distance_2d(
tracking_2d_projection,
detection.keypoints,
image_size=(int(w), int(h)),
)
affinity_2d = calculate_affinity_2d(
distance_2d,
delta_t,
w_2d=w_2d,
alpha_2d=alpha_2d,
lambda_a=lambda_a,
)
# Calculate 3D affinity
distances = perpendicular_distance_camera_2d_points_to_tracking_raycasting(
detection, tracking, delta_t
)
affinity_3d = calculate_affinity_3d(
distances,
delta_t,
w_3d=w_3d,
alpha_3d=alpha_3d,
lambda_a=lambda_a,
)
# Combine affinities
total_affinity = affinity_2d + affinity_3d
return jnp.sum(total_affinity).item()
# %%
@beartype
def calculate_camera_affinity_matrix_jax(
trackings: Sequence[Tracking],
camera_detections: Sequence[Detection],
w_2d: float,
alpha_2d: float,
w_3d: float,
alpha_3d: float,
lambda_a: float,
) -> Float[Array, "T D"]:
"""
Vectorized implementation to compute an affinity matrix between *trackings*
and *detections* coming from **one** camera.
Compared with the simple double-for-loop version, this leverages `jax`'s
broadcasting + `vmap` facilities and avoids Python loops over every
(tracking, detection) pair. The mathematical definition of the affinity
is **unchanged**, so the result remains bit-identical to the reference
implementation used in the tests.
"""
# ------------------------------------------------------------------
# Quick validations / early-exit guards
# ------------------------------------------------------------------
if len(trackings) == 0 or len(camera_detections) == 0:
# Return an empty affinity matrix with appropriate shape.
return jnp.zeros((len(trackings), len(camera_detections))) # type: ignore[return-value]
cam = next(iter(camera_detections)).camera
# Ensure every detection truly belongs to the same camera (guard clause)
cam_id = cam.id
if any(det.camera.id != cam_id for det in camera_detections):
raise ValueError(
"All detections passed to `calculate_camera_affinity_matrix` must come from one camera."
)
# We will rely on a single `Camera` instance (all detections share it)
w_img_, h_img_ = cam.params.image_size
w_img, h_img = float(w_img_), float(h_img_)
# ------------------------------------------------------------------
# Gather data into ndarray / DeviceArray batches so that we can compute
# everything in a single (or a few) fused kernels.
# ------------------------------------------------------------------
# === Tracking-side tensors ===
kps3d_trk: Float[Array, "T J 3"] = jnp.stack(
[trk.state.keypoints for trk in trackings]
) # (T, J, 3)
J = kps3d_trk.shape[1]
# === Detection-side tensors ===
kps2d_det: Float[Array, "D J 2"] = jnp.stack(
[det.keypoints for det in camera_detections]
) # (D, J, 2)
# ------------------------------------------------------------------
# Compute Δt matrix shape (T, D)
# ------------------------------------------------------------------
# Epoch timestamps are ~1.7 × 10⁹; storing them in float32 wipes out
# subsecond detail (resolution ≈ 200 ms). Keep them in float64 until
# after subtraction so we preserve Δtontheorderofmilliseconds.
# --- timestamps ----------
t0 = min(
chain(
(trk.state.last_active_timestamp for trk in trackings),
(det.timestamp for det in camera_detections),
)
).timestamp() # common origin (float)
ts_trk = jnp.array(
[trk.state.last_active_timestamp.timestamp() - t0 for trk in trackings],
dtype=jnp.float32, # now small, ms-scale fits in fp32
)
ts_det = jnp.array(
[det.timestamp.timestamp() - t0 for det in camera_detections],
dtype=jnp.float32,
)
# Δt in seconds, fp32 throughout
delta_t = ts_det[None, :] - ts_trk[:, None] # (T,D)
min_dt_s = float(DELTA_T_MIN.total_seconds())
delta_t = jnp.clip(delta_t, a_min=min_dt_s, a_max=None)
# ------------------------------------------------------------------
# ---------- 2D affinity -------------------------------------------
# ------------------------------------------------------------------
# Project each tracking's 3D keypoints onto the image once.
# `Camera.project` works per-sample, so we vmap over the first axis.
proj_fn = jax.vmap(cam.project, in_axes=0) # maps over the keypoint sets
kps2d_trk_proj: Float[Array, "T J 2"] = proj_fn(kps3d_trk) # (T, J, 2)
# Normalise keypoints by image size so absolute units do not bias distance
norm_trk = kps2d_trk_proj / jnp.array([w_img, h_img])
norm_det = kps2d_det / jnp.array([w_img, h_img])
# L2 distance for every (T, D, J)
# reshape for broadcasting: (T,1,J,2) vs (1,D,J,2)
diff2d = norm_trk[:, None, :, :] - norm_det[None, :, :, :]
dist2d: Float[Array, "T D J"] = jnp.linalg.norm(diff2d, axis=-1)
# Compute per-keypoint 2D affinity
delta_t_broadcast = delta_t[:, :, None] # (T, D, 1)
affinity_2d = (
w_2d
* (1 - dist2d / (alpha_2d * delta_t_broadcast))
* jnp.exp(-lambda_a * delta_t_broadcast)
)
# ------------------------------------------------------------------
# ---------- 3D affinity -------------------------------------------
# ------------------------------------------------------------------
# For each detection pre-compute back-projected 3D points lying on z=0 plane.
backproj_points_list = [
det.camera.unproject_points_to_z_plane(det.keypoints, z=0.0)
for det in camera_detections
] # each (J,3)
backproj: Float[Array, "D J 3"] = jnp.stack(backproj_points_list) # (D, J, 3)
zero_velocity = jnp.zeros((J, 3))
trk_velocities = jnp.stack(
[
trk.velocity if trk.velocity is not None else zero_velocity
for trk in trackings
]
)
predicted_pose: Float[Array, "T D J 3"] = (
kps3d_trk[:, None, :, :] # (T,1,J,3)
+ trk_velocities[:, None, :, :] * delta_t[:, :, None, None] # (T,D,1,1)
)
# Camera center shape (3,) -> will broadcast
cam_center = cam.params.location
# Compute perpendicular distance using vectorized formula
# p1 = cam_center (3,)
# p2 = backproj (D, J, 3)
# P = predicted_pose (T, D, J, 3)
# Broadcast plan: v1 = P - p1 → (T, D, J, 3)
# v2 = p2[None, ...]-p1 → (1, D, J, 3)
# Shapes now line up; no stray singleton axis.
p1 = cam_center
p2 = backproj
P = predicted_pose
v1 = P - p1
v2 = p2[None, :, :, :] - p1 # (1, D, J, 3)
cross = jnp.cross(v1, v2) # (T, D, J, 3)
num = jnp.linalg.norm(cross, axis=-1) # (T, D, J)
den = jnp.linalg.norm(v2, axis=-1) # (1, D, J)
dist3d: Float[Array, "T D J"] = num / den
affinity_3d = (
w_3d * (1 - dist3d / alpha_3d) * jnp.exp(-lambda_a * delta_t_broadcast)
)
# ------------------------------------------------------------------
# Combine and reduce across keypoints → (T, D)
# ------------------------------------------------------------------
total_affinity: Float[Array, "T D"] = jnp.sum(affinity_2d + affinity_3d, axis=-1)
return total_affinity # type: ignore[return-value]
@beartype
def calculate_affinity_matrix(
trackings: Sequence[Tracking],
detections: Sequence[Detection] | Mapping[CameraID, list[Detection]],
w_2d: float,
alpha_2d: float,
w_3d: float,
alpha_3d: float,
lambda_a: float,
) -> dict[CameraID, AffinityResult]:
"""
Calculate the affinity matrix between a set of trackings and detections.
Args:
trackings: Sequence of tracking objects
detections: Sequence of detection objects or a group detections by ID
w_2d: Weight for 2D affinity
alpha_2d: Normalization factor for 2D distance
w_3d: Weight for 3D affinity
alpha_3d: Normalization factor for 3D distance
lambda_a: Decay rate for time difference
Returns:
A dictionary mapping camera IDs to affinity results.
"""
if isinstance(detections, Mapping):
detection_by_camera = detections
else:
detection_by_camera = classify_by_camera(detections)
res: dict[CameraID, AffinityResult] = {}
for camera_id, camera_detections in detection_by_camera.items():
affinity_matrix = calculate_camera_affinity_matrix_jax(
trackings,
camera_detections,
w_2d,
alpha_2d,
w_3d,
alpha_3d,
lambda_a,
)
# row, col
indices_T, indices_D = linear_sum_assignment(affinity_matrix)
affinity_result = AffinityResult(
matrix=affinity_matrix,
trackings=trackings,
detections=camera_detections,
indices_T=indices_T,
indices_D=indices_D,
)
res[camera_id] = affinity_result
return res
# %%
# let's do cross-view association
W_2D = 1.0
ALPHA_2D = 1.0
LAMBDA_A = 0.1
W_3D = 1.0
ALPHA_3D = 1.0
trackings = sorted(global_tracking_state.trackings.values(), key=lambda x: x.id)
unmatched_detections = shallow_copy(next_group)
camera_detections = classify_by_camera(unmatched_detections)
affinities = calculate_affinity_matrix(
trackings,
unmatched_detections,
w_2d=W_2D,
alpha_2d=ALPHA_2D,
w_3d=W_3D,
alpha_3d=ALPHA_3D,
lambda_a=LAMBDA_A,
)
display(affinities)
# %%
def affinity_result_by_tracking(
results: Iterable[AffinityResult],
min_affinity: float = 0.0,
) -> dict[TrackingID, list[Detection]]:
"""
Group affinity results by target ID.
Args:
results: the affinity results to group
min_affinity: the minimum affinity to consider
Returns:
a dictionary mapping tracking IDs to a list of detections
"""
res: dict[TrackingID, list[Detection]] = defaultdict(list)
for affinity_result in results:
for affinity, t, d in affinity_result.tracking_association():
if affinity < min_affinity:
continue
res[t.id].append(d)
return res
def update_tracking(
tracking: Tracking,
detections: Sequence[Detection],
max_delta_t: timedelta = timedelta(milliseconds=100),
lambda_t: float = 10.0,
) -> None:
"""
update the tracking with a new set of detections
Args:
tracking: the tracking to update
detections: the detections to update the tracking with
max_delta_t: the maximum time difference between the last active timestamp and the latest detection
lambda_t: the lambda value for the time difference
Note:
the function would mutate the tracking object
"""
last_active_timestamp = tracking.state.last_active_timestamp
latest_timestamp = max(d.timestamp for d in detections)
d = thaw(tracking.state.historical_detections_by_camera)
for detection in detections:
d[detection.camera.id] = detection
for camera_id, detection in d.items():
if detection.timestamp - latest_timestamp > max_delta_t:
del d[camera_id]
new_detections = freeze(d)
new_detections_list = list(new_detections.values())
project_matrices = jnp.stack(
[detection.camera.params.projection_matrix for detection in new_detections_list]
)
delta_t = jnp.array(
[
detection.timestamp.timestamp() - last_active_timestamp.timestamp()
for detection in new_detections_list
]
)
kps = jnp.stack([detection.keypoints for detection in new_detections_list])
conf = jnp.stack([detection.confidences for detection in new_detections_list])
kps_3d = triangulate_points_from_multiple_views_linear_time_weighted(
project_matrices, kps, delta_t, lambda_t, conf
)
new_state = TrackingState(
keypoints=kps_3d,
last_active_timestamp=latest_timestamp,
historical_detections_by_camera=new_detections,
)
tracking.update(kps_3d, latest_timestamp)
tracking.state = new_state
# %%
affinity_results_by_tracking = affinity_result_by_tracking(affinities.values())
for tracking_id, detections in affinity_results_by_tracking.items():
update_tracking(global_tracking_state.trackings[tracking_id], detections)
# %%