Files
Pose_to_SMPL_an_230402/fit/tools/train.py
2025-07-25 15:05:31 +08:00

89 lines
3.3 KiB
Python

import torch
import torch.nn.functional as F
import torch.optim as optim
import sys
import os
from tqdm import tqdm
sys.path.append(os.getcwd())
from save import save_single_pic
def init(smpl_layer, target, device, cfg):
params = {}
params["pose_params"] = torch.zeros(target.shape[0], 72)
params["shape_params"] = torch.zeros(target.shape[0], 10)
params["scale"] = torch.ones([1])
smpl_layer = smpl_layer.to(device)
params["pose_params"] = params["pose_params"].to(device)
params["shape_params"] = params["shape_params"].to(device)
target = target.to(device)
params["scale"] = params["scale"].to(device)
params["pose_params"].requires_grad = True
params["shape_params"].requires_grad = bool(cfg.TRAIN.OPTIMIZE_SHAPE)
params["scale"].requires_grad = bool(cfg.TRAIN.OPTIMIZE_SCALE)
optim_params = [{'params': params["pose_params"], 'lr': cfg.TRAIN.LEARNING_RATE},
{'params': params["shape_params"], 'lr': cfg.TRAIN.LEARNING_RATE},
{'params': params["scale"], 'lr': cfg.TRAIN.LEARNING_RATE*10},]
optimizer = optim.Adam(optim_params)
index = {}
smpl_index = []
dataset_index = []
for tp in cfg.DATASET.DATA_MAP:
smpl_index.append(tp[0])
dataset_index.append(tp[1])
index["smpl_index"] = torch.tensor(smpl_index).to(device)
index["dataset_index"] = torch.tensor(dataset_index).to(device)
return smpl_layer, params, target, optimizer, index
def train(smpl_layer, target,
logger, writer, device,
args, cfg, meters):
res = []
smpl_layer, params, target, optimizer, index = \
init(smpl_layer, target, device, cfg)
pose_params = params["pose_params"]
shape_params = params["shape_params"]
scale = params["scale"]
with torch.no_grad():
verts, Jtr = smpl_layer(pose_params, th_betas=shape_params)
params["scale"]*=(torch.max(torch.abs(target))/torch.max(torch.abs(Jtr)))
for epoch in tqdm(range(cfg.TRAIN.MAX_EPOCH)):
verts, Jtr = smpl_layer(pose_params, th_betas=shape_params)
loss = F.smooth_l1_loss(scale*Jtr.index_select(1, index["smpl_index"]),
target.index_select(1, index["dataset_index"]))
optimizer.zero_grad()
loss.backward()
optimizer.step()
meters.update_early_stop(float(loss))
if meters.update_res:
res = [pose_params, shape_params, verts, Jtr]
if meters.early_stop:
logger.info("Early stop at epoch {} !".format(epoch))
break
if epoch % cfg.TRAIN.WRITE == 0 or epoch<10:
# logger.info("Epoch {}, lossPerBatch={:.6f}, scale={:.4f}".format(
# epoch, float(loss),float(scale)))
print("Epoch {}, lossPerBatch={:.6f}, scale={:.4f}".format(
epoch, float(loss),float(scale)))
###writer.add_scalar('loss', float(loss), epoch)
###writer.add_scalar('learning_rate', float(
###optimizer.state_dict()['param_groups'][0]['lr']), epoch)
# save_single_pic(res,smpl_layer,epoch,logger,args.dataset_name,target)
logger.info('Train ended, min_loss = {:.4f}'.format(
float(meters.min_loss)))
return res